

THE UNIFRAME SYSTEM-LEVEL

GENERATIVE PROGRAMMING FRAMEWORK

A Thesis

Submitted to the Faculty

of

Purdue University

by

Zhisheng Huang

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2003

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
The Uniframe System-Level Generative Programming Framework

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Indiana University/Purdue University,Department of Computer and
Information Sciences,Indianapolis,IN,46202

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

278

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ii

To Ping.

iii

ACKNOWLEDGEMENTS

The graduate education in the MS program at the Department of Computer and

Information Science of Indiana University-Purdue University Indianapolis (IUPUI) has

been a turning point and great experience in my life. It helps me to realize my potential as

a good computer professional. The knowledge gained will be valuable to me throughout

my career. My work as a Research Assistant on the UniFrame research project was a

great opportunity to further enhance the skills acquired during my graduate study. I

would like to take this opportunity to express my sincere gratitude to all those who

helped to make my graduate study fruitful and make this thesis possible.

I would like to profoundly thank my advisors Dr. Rajeev Raje and Dr. Andrew

Olson for their great guidance throughout the course of my study and research work.

Their immense inputs and insights were invaluable for this thesis. I am very grateful to

them for their constant encouragement, making me reach higher in all my academic

endeavors.

I would also like to thank Dr. Jeffery Huang for being on my thesis committee

and for the effort to review my thesis. I am also very grateful to him for his

encouragement in my endeavor in the computer science.

I would like to thank all my colleagues on the UniFrame project, the faculty and

staff of the Department of Computer and Information Science of IUPUI for their

assistance towards this thesis.

I am thankful to the U.S. Department of Defense and the U.S. Office of Naval

Research for supporting this research under award number N00014-01-1-0746.

Finally, I would like to thank my wife for her great love, encouragement and

support, which have been the source of my inspiration and strength all the time.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .………………………….………………………………… iii

TABLE OF CONTENTS ……………………………………………………………….. iv

LIST OF TABLES ...……………………………………………………………………. ix

LIST OF FIGURES .………..………..…..…..…………………………………………. xv

ABSTRACT ..….……………………………………………………………………... xviii

1. INTRODUCTION……………………………..…………………………………… 1

1.1 Problem Definition and Motivation .….…………………………………….... 2

1.2 Objectives………...……………………………………………………….. 4

1.3 Contributions .…..…………………………………………….……………… 5

1.4 Thesis Organization .…………………………………………………………. 6

2. BACKGROUND AND RELATED WORK …………..……………………………… 7

2.1 Generative Programming …………………………………………………..… 7

2.2 Product Line Practice ……………………………………………………….. 10

2.3 Domain Engineering Methods and Technologies .………………………….. 11

2.3.1 DEMRAL…………………………………………………………. 11

2.3.2 Draco……………………………………………………………… 13

2.3.3 GenVoca …………………………………………………………... 15

3. OVERVIEW OF THE UNIFRAME ……………………………………….………... 17

3.1 The Unified Meta-Component Model (UMM) ……………………………... 18

v

Page

3.1.1 Components ...…………………………………………………….. 18

3.1.2 Service and Service Guarantees ..………………………………… 19

3.1.3 Infrastructure ...…………………………………………………… 19

3.2 The UniFrame Approach (UA) ……………………………………………... 20

3.2.1 Generative Domain Engineering ...……………………………….. 21

3.2.2 Component Engineering ...………………………………………... 22

3.2.3 Active Distributed Component Management …………………….. 22

3.2.4 Generative Application Engineering……………………………… 22

3.3 UMM Specification ...………………………………………………………. 23

3.4 The UniFrame QOS Framework (UQOS) ………………………………….. 27

3.5 The UniFrame Resource Discovery Service (URDS) ...……………………. 29

3.6 The UniFrame System-Level Generative Programming Framework

 (USGPF)..………………………….……………………..………………….32

4. THE UNIFRAME GDM (UGDM)...………………………………………………… 34

4.1 Feature Modeling …………………………………………………………… 34

4.2 The UniFrame Domain Specific Language (UDSL) ...……………………... 36

4.2.1 Introduction to Domain-Specific Language ……..……………….. 37

4.2.2 Detail of the UDSL ……………………………………………….. 37

4.2.3 Three Forms of the Feature Description for a Feature Diagram

 in the UDSL .…………………………………………………….... 48

4.2.4 Implementation of the UDSL …………………………………….. 51

4.3 The UniFrame GDM (UGDM) ...…………………………………………… 52

4.3.1 General Information in the UGDM ………………………………. 53

4.3.2 Problem Space in the UGDM ...…………………………………... 54

4.3.3 Solution Space in the UGDM ..…………………………………… 57

5. THE UNIFRAME UGDM DEVELOPMENT PROCESS (UGDP) ………………… 67

5.1 Overview of the UGDP...…………………………………………………… 67

5.2 Domain Analysis……………………………………………………………. 68

vi

Page

5.2.1 Domain Definition ...……………………………………………… 69

5.2.2 Domain Modeling ………………………………………………… 73

5.3 Domain Design ...…………………………………………………………… 77

5.3.1 Designing a Common Layered Architecture ...…………………… 78

5.3.2 Creating Component Diagrams…………………………………… 89

5.3.3 Creating Sequence Diagrams ...…………………………………… 91

5.3.4 Refining Critical Use Case Model to Abstract Component Level... 93

5.3.5 Identifying Component Interfaces and Communication Patterns … 93

5.3.6 Refining Critical Use Case Model to the Function/Interface

Level ..……………………………………………………………. 97

5.3.7 Refining Architecture Model in Disjunctive Normal Form from

 Component Level to Function/Interface Level………………….. 100

5.3.8 Mapping Architecture Model to Critical Use Case Model

 (Function/Interface Level)………………………………………. 102

5.3.9 Creating Abstract Component Model …………………………… 103

5.3.10 Creating QoS Composition and Decomposition Model ...……... 103

5.4 Ordering Language Design ...……………………………………………… 104

6. THE UNIFRAME SYSTEM GENERATION INFRASTRUCTURE (USGI) ..…… 107

6.1 Overview of the USGI Architecture ………………………………………. 107

6.2 Modeling the USGI Workflow ……………………………………………. 110

6.2.1 USGI Activity Diagram …………………………………………. 110

6.2.2 USGI Object Flow ………………………………………………. 113

6.3 Modules of the USGI ...…………………………………………………… 113

6.3.1 Data Structures Used in Algorithms in Modules of USGI ……… 113

6.3.2 URDS ……………………………………………………………. 116

6.3.3 Wrapper and Glue Generator……………………………………. 117

6.3.4 UGDM Knowledge Base (UGDMKB) ………………………….. 119

6.3.5 UGDMKB Builder Terminal ……………………………………. 119

6.3.6 UGDMKB Generator……………………………………………. 119

vii

Page

6.3.7 Application Programmer Terminal ……………………………… 120

6.3.8 Order Processor………………………………………………….. 121

6.3.9 System Generator ...……………………………………………… 122

7. THE USGI PROTOTYPE DESIGN AND IMPLEMENTATION ………………… 136

7.1 Technology ...……………………………………………………………… 136

7.1.1 J2EETM Application Model ……………………………………… 136

7.1.2 J2EETM Components …………………………………………….. 137

7.1.3 Service Technologies ……………………………………………. 139

7.1.4 Communication Technologies ...………………………………… 140

7.2 USGI Prototype Design ...…………………………………………………. 141

7.3 USGI Prototype Implementation ...………………………………………... 143

7.3.1 Platform and Environment ………………………………………. 143

7.3.2 Communication Infrastructure ...………………………………… 143

7.3.3 Implementation Details ………………………………………….. 144

7.3.4 Experimental Results ...………………………………………….. 180

8. CONCLUSION ...…………………………………………………………………… 185

8.1 Outcome of the Study ...…………………………………………………… 185

8.2 Future Work ……………………………………………………………….. 187

8.2.1 Future Work on the UGDM ...…………………………………… 187

8.2.2 Future Work on the UGDP ……………………………………… 187

8.2.3 Future Work on the USGI Architecture...……………………….. 190

8.2.4 Future Work on the USGI Prototype ……………………………. 190

8.3 Summary ...………………………………………………………………… 192

APPENDICES ...………………………………………………………………………. 193

APPENDIX A: The Normalization Rules and Expansion Rules for Feature

 Description …………………………………………………… 193

APPENDIX B: Component Diagrams in the Banking Domain Example …….. 195

viii

Page

APPENDIX C: Sequence Diagrams in the Banking Domain Example ………. 197

APPENDIX D: Function Summary of Abstract Components in the

Banking Domain Example …………………………………… 208

APPENDIX E: Interface Model for the Banking Domain Example ...………... 211

APPENDIX F: Abstract Component Model for the Banking Domain

Example ….…………………………………………………… 215

APPENDIX G: QoS Composition and Decomposition Rules for the

Banking Domain Example …………………………………… 225

APPENDIX H: QoS Composition and Decomposition Model for the

Banking Domain Example …………………………………… 229

APPENDIX I: UGDM in XML Format for the Banking Domain Example ….. 235

APPENDIX J: UGDM Example: Banking Domain Example ………………… 243

APPENDIX K: Acronyms …………………………………………………….. 251

LIST OF REFERENCES ……………………………………………………………… 252

ix

LIST OF TABLES

Table Page

Table 2.1 Outline of DEMRAL ………………………………………………………… 12

Table 3.1 UMM Specification Template ……………………………………………….. 23

Table 3.2 UMM Specification Template (Continued from Table 3.1) …………………. 24

Table 4.1 BNF Definition of the UDSL………………………………………………… 38

Table 4.2 BNF Definition of the UDSL (Continued from Table 4.1) ………………….. 39

Table 4.3 Feature Description of TransactionSubsystem in the Hierarchical Form ……. 49

Table 4.4 Feature Description of TransactionSubsystem in the Normalized Form …….. 50

Table 4.5 Feature Description of TransactionSubsystem in the Disjunctive Normal

 Form ...…………………………………………………………………………51

Table 4.6 Outline of the UGDM ……………………………….……………………….. 52

Table 4.7 An Example of the UCM …………………………………………………….. 54

Table 4.8 An Example of the QRM …………………………………………………….. 55

Table 4.9 An Example of the AMHF…………………………………………………… 56

Table 4.10 An Example of the System-Level MM ……………………………………... 56

Table 4.11 An Example of the AMDNF at the Abstract Component Level………….… 58

Table 4.12 An Example of the AMDNF at the Function/Interface Level ……………… 59

Table 4.13 An Example of AMM ………………………………………………………. 59

Table 4.14 An Example of ACIM………………………………………………………. 60

Table 4.15 An Example of Component-level MM ……………………………………... 61

Table 4.16 An Example of an Interface ………………………………………………… 62

Table 4.17 An Example of ACIM………………………………………………………. 62

Table 4.18 An Example of CUCM ……………………………………………………... 64

x

Table Page

Table 4.19 An Example of AMDNF and CUCM Mapping

 (Function/Interface Level) …………………………………………………. 64

Table 4.20 An Example of QCDM ……………………………………………………... 65

Table 5.1 Outline of the UGDP…………………………………………………………. 68

Table 5.2 Domain Description for the Banking Domain Example……………………... 70

Table 5.3 Description of the UCM for the Banking Domain Example…………………. 72

Table 5.4 Domain Dictionary for the Banking Domain Example………………………. 73

Table 5.5 Use Case Model in the UDSL for the Banking Domain Example…………… 74

Table 5.6 Key Concepts in the UDSL for the Banking Domain Example……………… 75

Table 5.7 QRM in the UDSL for the Banking Domain Example………………………. 77

Table 5.8 CUCM in the UDSL for the Banking Domain Example ...…………………... 77

Table 5.9 Constraints in the UDSL for the Banking Domain Example (Layer 1)……… 81

Table 5.10 Design Feature Description for the Banking Domain Example (Layer 1)….. 81

Table 5.11 Constraints in the UDSL for the Banking Domain Example (Layer 2)…….. 83

Table 5.12 Design Feature Description for the Banking Domain Example (Layer 2)….. 83

Table 5.13 Constraints in the UDSL for the Banking Domain Example (Layer 3) …….. 84

Table 5.14 Design Feature Description for the Banking Domain Example (Layer 3)….. 85

Table 5.15 Constraints in the UDSL for the Banking Domain Example……………….. 86

Table 5.16 Design Feature Description for the Banking Domain Example…………….. 87

Table 5.17 AMHF in the UDSL for the Banking Domain Example……………………. 87

Table 5.18 ACIM in the UDSL for the Banking Domain Example…………………….. 88

Table 5.19 System-Level Multiplicity Model in the UDSL for the Banking Domain

 Example …………………………………………………………………….. 88

Table 5.20 Component-level Multiplicity Model in the UDSL for the Banking

 Domain Example ………………………………………………...…………. 88

Table 5.21 AMNF in the UDSL for the Banking Domain Example ...…….…………… 90

Table 5.22 Architecture Model in Disjunctive Normal Form (Abstract Component

 Level) in the UDSL for the Bank Example ……………………………….... 90

xi

Table Page

Table 5.23 CUCM (Abstract Component Level) in the UDSL for the Banking

 Domain Example…………………………..……………………………….. 92

Table 5.24 Function Summary for TransactionManager in the Banking Domain

 Example…………………………………………………………………….. 94

Table 5.25 Interface Description for IAccountDatabase in the Banking Domain

Example…………………………………………………………………….. 94

Table 5.26 Provided Interfaces and Required Interfaces of Abstract Components for

 the Banking Domain Example……………………………………………… 95

Table 5.27 Abstract Components at Functional/Interface Level in the UDSL for the

Banking Domain Example………………………………………………….. 96

Table 5.28 ACIM in the UDSL for the Banking Domain Example ……………………. 96

Table 5.29 ACIM in the UDSL for the Banking Domain Example (Continued from

 Table 5.28)………………………………………………………………….. 97

Table 5.30 Mapping of Abstract Component from Component Level to Function

 /Interface Level in the UDSL for the Banking Domain Example………….. 97

Table 5.31 CUCM at Function/Interface Level for the Banking Domain Example ……. 98

Table 5.32 CUCM at Function/Interface Level for the Banking Domain Example

 (Continued from Table 5.31)...…………………………….…………………99

Table 5.33 Normalized Expression of CUCM at Function/Interface Level for the

 Banking Domain Example...………………………………………………… 99

Table 5.34 Disjunctive Normal Form of the CUCM at Function/Interface Level

in the UDSL for the Banking Domain Example...…………………………. 100

Table 5.35 AMDNF at Function/Interface Level in the UDSL for the Banking

Domain Example…………………………………………………………… 101

Table 5.36 Mapping of AMDNF from Component Level to Function/Interface

Level in the UDSL for the Banking Domain Example...…………………... 102

Table 5.37 AMDNF and CUCM Mapping (Function/Interface Level) for the

Banking Domain Example…………………………………………….. 102

xii

Table Page

Table 5.38 QoS Composition and Decomposition Meta-Rules Used in the

Banking Domain Example...……………………………………………….. 104

Table 5.39 Tabular Ordering Language for the Banking Domain Example…………... 105

Table 5.40 Mapping Rules for the Tabular Ordering Language of the Banking

 Domain Example..………………………………………………………..... 106

Table 6.1 Data Structure for Algorithms in System Generator………………………... 114

Table 6.2 Data Structure for Algorithms in System Generator (Continued from

Table 6.1) ………….. 115

Table 6.3 Data Structure for Algorithms in System Generator (Continued from

Table 6.2) ………….. 116

Table 6.4 Process for System Generation ……………………………………………... 123

Table 8.1 AMDNF in XML the format Created by the GME Interpreter …………….. 189

Table A.1 Normalization Rules for Feature Description ……………………………… 193

Table A.2 Expansion Rules for Feature Description…………………………………... 194

Table D.1 Function Summary for TransactionManager ……………………………… 208

Table D.2 Function Summary for CashierTerminal…………………………………... 208

Table D.3 Function Summary for ATM ……………………………………………….. 209

Table D.4 Function Summary for AccountDatabase………………………………….. 209

Table D.5 Function Summary for DeluxeTransactionServer…………………………. 209

Table D.6 Function Summary for EconomicTransactionServer ……………………… 210

Table D.7 Function Summary for CashierValidationServer………………………….. 210

Table D.8 Function Summary for CustomerValidationServer………………………… 210

Table E.1 Interface Description for IAccountDatabase……………………………….. 211

Table E.2 Interface IValidation for the banking domain Example ……………………. 212

Table E.3 Interface IAccountManagement for the banking domain Example ………… 212

Table E.4 Interface Description for ITransactionServerManger……………………… 213

Table E.5 Interface ICustomerManagement for the banking domain Example ……….. 214

Table F.1 UMM Specification for AccountDatabaseCase1 …………………………... 215

xiii

Table Page

Table F.2 UMM Specification for AccountDatabaseCase1

 (Continued from Table F.1) …………………………………..……………. 216

Table F.3 UMM Specification for AccountDatabaseCase2 …………………………... 216

Table F.4 UMM Specification for DeluxeTransactionServerCase1…………………... 217

Table F.5 UMM Specification for DeluxeTransactionServerCase2…………………... 218

Table F.6 UMM Specification for ATMCase1 ………………………………………… 219

Table F.7 UMM Specification for CashierTerminalCase1 …………………………… 220

Table F.8 UMM Specification for CustomerValidationServerCase1…………………. 221

Table F.9 UMM Specification for CashierValidationServerCase1 …………………... 222

Table F.10 UMM Specification for TransactionServerManagerCase1 ………………. 223

Table F.11 UMM Specification for EconomicTransactionServerCase1……………… 224

Table G.1 QoS Composition Rules for throughput for the Banking Domain

 Example……………………………………………………………….... 225

Table G.2 QoS Composition Rules for endToEndDelay for the Banking

Domain Example…………………………………………………………….226

Table G.3 QoS Decomposition Rules for throughput for the Banking Domain

 Example………..…………………………………………………………… 227

Table G.4 QoS Decomposition Rules for endToEndDelay for the Banking

Domain Example…………………………………………………………… 228

Table H.1 QCDM for CriticalUseCase1 ……………………………………………… 229

Table H.2 QCDM for CriticalUseCase1 (Continued from Table H.1) ……………….. 230

Table H.3 QCDM for CriticalUseCase2 ……………………………………………… 231

Table H.4 QCDM for CriticalUseCase2 (Continued from Table H.3) ……………….. 232

Table H.5 QCDM for CriticalUseCase3 ……………………………………………… 233

Table H.6 QCDM for CriticalUseCase3 (Continued from Table H.5) …………..…… 234

Table I.1 AMDNF at Component Level in the XML Format…………………………. 235

Table I.2 AMDNF at Component Level in the XML Format (Continued from

Table I.1) ……………………………………………………………………. 236

Table I.3 AMDNF at Function/Interface Level in the XML Format ………………….. 236

xiv

Table Page

Table I.4 AMDNF at Function/Interface Level in the XML Format (Continued

from Table I.3)………………………………………………………………. 237

Table I.5 AMDNF at Function/Interface Level in the XML Format (Continued

from Table I.4)………………………………………………………………. 238

Table I.6 AMDNF at Function/Interface Level in the XML Format (Continued

from Table I.5)………………………………………………………………. 239

Table I.7 Abstract Component Interaction Model in the XML Format……………….. 240

Table I.8 Architecture Model and Critical Use Case Model Mapping

(Function/Interface Level) in the XML format……..……………………….. 241

Table I.9 Mapping of AMDNF from Component Level to Function/Interface

Level in the XML Format .………………………………………………….. 242

xv

LIST OF FIGURES

Figure Page

Figure 2.1 Elements of a Generative Domain Model…………………………………….. 8

Figure 3.1 UA Core Activities ………………………………………………………….. 21

Figure 3.2 URDS Architecture………………………………………………………….. 29

Figure 4.1 Types of Basic Variation Points in Feature Modeling ………………………. 36

Figure 4.2 Feature Diagram of TransactionSubsystem in the Banking Domain

 Example ……………………………………………………………….……. 49

Figure 5.1 UCM for the Banking Domain Example ……………………………………. 72

Figure 5.2 Feature Diagram of UCM for the Banking Domain Example ……………… 74

Figure 5.3 Feature Diagram of Key Concepts for the Banking Domain Example ...…… 75

Figure 5.4 QRM for the Banking Domain Example ……………………………………. 76

Figure 5.5 CUCM for the Banking Domain Example ………………………………….. 76

Figure 5.6 Feature Diagram of AMHF for the Banking Domain Example (Layer 1) ….. 80

Figure 5.7 DFIM for the Banking Domain Example (Layer 1) ………………………… 80

Figure 5.8 Feature Diagram of AMHF for the Banking Domain Example (Layer 2) ….. 82

Figure 5.9 DFIM for the Banking Domain Example (Layer 2) ………………………… 82

Figure 5.10 Feature Diagram of AMHF for the Banking Example (Layer 3) ………….. 84

Figure 5.11 DFIM for the Banking Domain Example (Layer 3) ……………………….. 84

Figure 5.12 Feature Diagram of AMHM for the Banking Domain Example …………... 85

Figure 5.13 DFIM for the Banking Domain Example ………………………………….. 86

Figure 5.14 Component Diagram of BankCase1 for the Banking Domain Example …... 91

Figure 5.15 Sequence Diagram of DepositMoney (Case 1)……………..……………… 92

Figure 6.1 USGI Architecture …………………………………………………………. 109

Figure 6.2 USGI Activity Diagram ……………………………………………………. 111

xvi

Figure Page

Figure 6.3 USGI Object Flow …………………………………………………………. 112

Figure 6.4 Adapter Model ……………………………………………………………... 118

Figure 7.1 Multi-tier Architecture of J2EETM Applications…………………………… 137

Figure 7.2 USGI Prototype Design ……………………………………………………. 142

Figure 7.3 View Provided by usgf.jsp…………………………………………………. 145

Figure 7.4 View Provided by OrderWithoutNLP.jsp………………………………….. 146

Figure 7.5 View Provided by OrderWithNLP.jsp……………………………………... 147

Figure 7.6 View Provided by Order.jsp……………………………………………….. 148

Figure 7.7 View Provided by AvailableConcreteComponents.jsp ……………………. 149

Figure 7.8 View Provided by SelectConcreteComponents.jsp …...………………….... 150

Figure 7.9 View Provided by DetermineAdapterTypes.jsp …………………………… 151

Figure 7.10 View Provided by AcquiredAdapters.jsp ………………………………… 151

Figure 7.11 View Provided by DynamicComponentQoS.jsp………………………….. 152

Figure 7.12 View Provided by StaticSystemValidation.jsp …………………………… 153

Figure 7.13 View Provided by DynamicSystemValidation.jsp ………………….…….. 154

Figure 7.14 View Provided by CompoenntDescription.jsp …………………………… 154

Figure 7.15 View Provided by ComponentDescription.jsp

 (Continued from Figure 7.14) ………..……………………...…………… 155

Figure 7.16 View Provided by UGDMKBGeneration.jsp …………………………….. 156

Figure 7.17 Flow between jsp Files in USGI Implementation………………………… 157

Figure 7.18 Class Diagram for UGDMKBGenerator …………………………………. 162

Figure 7.19 Class Diagram for OrderProcessor………………………………………. 164

Figure 7.20 Class Diagram for SystemGenerator ……………………………………... 165

Figure 7.21 Class Diagram for URDS_Proxy …………………………………………. 168

Figure 7.22 Class Diagram for NLP…………………………………………………… 169

Figure 7.23 Class Diagram for WrapperGlueGenerator_Proxy………………………. 170

Figure 7.24 Schemas for Abstract Component Model in the UGDM…………………. 172

Figure 7.25 Schemas for Other Models in the UGDM ………………………………... 177

Figure 8.1 Example of Generic Modeling Environment………………………………. 188

xvii

Figure Page

Figure B.1 Component Diagram of BankCase1 for the Banking Domain Example ….. 195

Figure B.2 Component Diagram of BankCase2 for the Banking Domain Example ….. 195

Figure B.3 Component Diagram of BankCase3 for the Banking Domain Example ….. 196

Figure B.4 Component Diagram of BankCase4 for the Banking Domain Example ….. 196

Figure C.1 Sequence Diagram of ValidateUsers_Cashier…………………………….. 197

Figure C.2 Sequence Diagram of ValidateUsers_Customer…………………………... 197

Figure C.3 Sequence Diagram of Login-exitAccount_Cashier………………….…….. 198

Figure C.4 Sequence Diagram of Login-exitAccount_Customer……….……………... 198

Figure C.5 Sequence Diagram of DepositMoney (Case 1) ……………………………. 199

Figure C.6 Sequence Diagram of DepositMoney (case 2) …………………………….. 199

Figure C.7 Sequence Diagram of DepositMoney (case 3) …………………………….. 200

Figure C.8 Sequence Diagram of DepositMoney (case 4) …………………………….. 200

Figure C.9 Sequence Diagram of WithdrawMoney (Case 1)………………………….. 201

Figure C.10 Sequence Diagram of WithdrawMoney (case 2)………………….……… 202

Figure C.11 Sequence Diagram of WithdrawMoney (case 3)…………………………. 202

Figure C.12 Sequence Diagram of WithdrawMoney (case 4)…………………………. 203

Figure C.13 Sequence Diagram of TransferMoney (case 1)…………………………... 203

Figure C.14 Sequence Diagram of TransferMoney (case 2)…………………………... 204

Figure C.15 Sequence Diagram of TransferMoney (case 3)…………………………... 204

Figure C.16 Sequence Diagram of TransferMoney (case 4)…………………………... 205

Figure C.17 Sequence Diagram of OpenAccount (case 1) ……………………………. 206

Figure C.18 Sequence Diagram of OpenAccount (case 2) ……………………………. 206

Figure C.19 Sequence Diagram of CloseAccount (case 1) ……………………………. 206

Figure C.20 Sequence Diagram of CloseAccount (case 2) ……………………………. 207

xviii

ABSTRACT

Huang, Zhisheng. M.S., Purdue University, May 2003. The UniFrame System-Level
Generative Programming Framework. Major Professors: Dr. Rajeev Raje and Dr.
Andrew Olson.

Current and future distributed computing systems (DCS) will certainly require

combining heterogeneous software components that are geographically dispersed so that

their realizations not only meet the functional requirements, but also satisfy the non-

functional criteria such as the desired quality of service (QoS). The UniFrame Approach

(UA) incorporates the concepts of a meta-component model, generative programming

and QoS, to achieve a semi-automatic software development for DCS. It permits a large

degree of component reuse and a seamless interoperation while creating QoS-aware DCS.

UA has two levels, the component level and the system level. This thesis presents the

UniFrame System-Level Generative Programming Framework (USGPF). The proposed

USGPF addresses the following issues: 1) a promising shift in the paradigm of

developing DCS from single systems to families of systems; and 2) a framework at the

system level for developing QoS-aware DCS. The USGPF consists of three parts: 1) the

UniFrame Generative Domain Model (UGDM), which captures the common and variable

properties of a DCS family; 2) the UniFrame UGDM Development Process (UGDP),

which is a use-case driven, architecture-centric, iterative and incremental process to

create a UGDM for a DCS family; and 3) the UniFrame System Generation Infrastructure

(USGI), which has a built-in support for the QoS validation to assist in the creation of

QoS-aware DCS. A prototype is designed and implemented to validate the proposed

USGPF. The results of applying this approach in the semi-automatic construction of

simple DCS from a banking domain are promising and demonstrate the effectiveness of

this research.

1

1. INTRODUCTION

The software development has been steadily evolving during the past few

decades. There has been a constant endeavor to bring the software industry on par with its

more mature peers like the hardware industry. The emergence of the component-based

software development (CBSD) and product line practice (PLP) are concrete steps in this

direction.

For many years, software systems were built individually for specific purposes.

With the advent of Object-Oriented Programming the concept of code reuse became a

highly popular and cost-effective programming technique. The CBSD takes this step

further by developing the entire software systems from appropriate commercial-off-the-

shelf (COTS) software components. Szyperski [SZY99] defines a software component as

a unit of composition with contractually specified interfaces and explicit context

dependencies. At the same time, with the advent of high speed networks and the growing

popularity and availability of the Internet, the paradigm in software development is

shifting towards distributed computing. CBSD has been a growing trend in the

development of software solutions for distributed computing systems (DCS). In recent

years, the software development has also shifted from the development of a single system

to the development of a family of systems. Generative programming [CZA00] is the

technique for developing such system families. The product line practice (PLP) initiative

[SEI02] launched by the Software Engineering Institute (SEI), Carnegie Mellon

University, is an attempt to facilitate this transition. The quick advances in the software

development not only open a lot of opportunities but also pose enormous challenges,

especially for the development of DCS. This thesis tries to address some of these

challenges.

2

1.1 Problem Definition and Motivation

As distributed computing becomes more and more crucial for the success of

today’s enterprises, there is an increasing need to develop software for DCS in an

effective and efficient way.

However, many challenges arise during the application of the CBSD to DCS.

Some of these challenges are an effect of the presence of multiple component models.

Currently, different component models have been proposed, such as JavaTM Remote

Method Invocation (RMI) [ORF98], Common Object Request Broker Architecture

(CORBATM) [OMG99, ORF98, SEI96], Distributed Component Object Model

(DCOMTM) [MS98], and .NET [NET03]. There are difficulties in bridging the

components belonging to different models, thus reducing the degree of component reuse.

How to seamlessly and effectively create DCS from heterogeneous distributed software

components based on these different models is a challenge that is currently being

addressed by the research community.

Another challenging issue is regarding the quality of service (QoS) of components

or of DCS generated from components. The ISO defines QoS as the totality of features

and characteristics of a product or a service that bear on its ability to satisfy stated or

implied needs [ISO86]. In order for a development approach to generate DCS with

predictable quality, the approach should have a built-in support for the QoS. However,

currently there are no widely accepted frameworks that incorporate QoS as an inherent

part of DCS development. This can lead to inconsistencies and irregularities in the quality

of DCS. This calls for a concrete framework which incorporates the QoS as an inherent

part of DCS development process and offers objective means to quantify, verify, validate

and specify the QoS of DCS.

The use of components to develop software for DCS is consistent with the notions

of generative programming and the product line practice (PLP). However, despite the

advances in the software development and the notion of generative programming, a lot of

distributed computing systems are still designed and built as single systems. This

paradigm of single system development has the problems of large investment, long

development cycles, difficulties in the system integration, and a lack of predictable

3

quality [COH00]. One reason of the delay in the application of the generative

programming to the distributed computing is due to the inherent complexity of DCS.

Another reason is that there is no well-defined process for creating DCS in such a way to

meet the increasing demand of more reliable DCS. The existing development processes

lack the built-in QoS support that is necessary for creating QoS-aware DCS. Hence, it is

utmost necessary to propose a development process that will incorporate these features.

The recent shift in the focus of Object Management Group (OMG) to the Model

Driven Architecture (MDA) [OMG01] is a recognition that the bridging of heterogeneous

software components based on different component models requires the standardization

not only of the infrastructure but also of the business and component meta-models. With

MDA, the development of DCS focuses first on the functionality and behavior,

undistorted by idiosyncrasies of the technology or technologies in which it will be

implemented. Thus, MDA divorces implementation details from the business functions.

So, it is not necessary to repeat the process of modeling an application or system's

functionality and its behavior each time a new technology is created. With MDA, the

functionality and the behavior are modeled once, and the mapping from a platform

independent model (PIM) to a platform dependent model (PSM) is implemented by tools,

easing the task of supporting new technologies.

Web Services [WEB02] are viewed as another possible solution to the problem of

bridging diverse heterogeneous distributed component models. Mayo [MAY02] describes

Web Services as a standards-based software technology that lets programmers and

integrators combine existing and new systems or applications in new ways over the

Internet, within a company’s boundaries, or across many companies. Web Services allow

interoperability between the software written in different programming languages,

developed by different vendors, or running on different Operating Systems or platforms.

Thus, Web Services provides the flexibility with respect to the interoperability, reuse and

development of applications in a distributed environment.

However, both MDA and Web Services do not take into account the QoS of

components and/or systems. They also do not define the process with a built-in QoS

support to create a DCS family. The Unified Meta-Component Model Framework

4

(UniFrame) research [RAJ00, RAJ01, RAJ02] is another attempt which aims to address

all above listed challenges. The UniFrame Approach (UA), a key constituent of the

UniFrame, tries to unify the existing and emerging distributed component models under

a common meta-model, the Unified Meta-component Model (UMM). It has the following

key concepts: a) a meta-component model (the Unified Meta Model – UMM [RAJ00]),

with an associated hierarchical setup for indicating the contracts and constraints of the

components, b) an integration of the QoS at the individual component and distributed

application levels, c) the validation and assurance of the QoS, based on the concept of

event grammars, and e) generative rules with formal specifications to assemble a DCS

from an ensemble of components out of available component choices. Chapter 3 provides

a more detailed overview of this approach.

The application of UA to create DCS has two levels [RAJ01]: 1) component level

- in this level, different components are created by developers, tested and verified from

the point of view of QoS, and then deployed on the network; 2) system level - this level

concentrates on creating a generative domain model (GDM) and automatically or semi-

automatically generating DCS by assembling a collection of heterogeneous distributed

software components based on the GDM. The generative programming techniques can be

applied at both levels of the UA. This thesis focuses on applying the generative

programming techniques at the system level in the context of UA.

1.2 Objectives

Specifically, this thesis aims at proposing the UniFrame System-Level Generative

Programming Framework (USGPF) to address the challenges stated in the previous

section. The overall objectives of the USGPF are:

� To propose the UniFrame Generative Domain Model (UGDM) to capture the

common and variable properties of a DCS family with QoS concerns in the

solution space. The generative domain model (GDM) for a DCS family differs

significantly from a model for a standalone program. The UGDM should be able

to capture many aspects of DCS in order to assist the developing of more reliable

5

DCS or QoS-aware DCS. The UGDM should take into account various aspects of

DCS, like system architecture, component interactions, communication patterns,

QoS composition and decomposition, and event grammar.

� To create the UniFrame UGDM Development Process (UGDP) for the

development of a DCS family by incorporating generative programming

techniques into the UA at the system level. The UGDP should be an effective

process for developing UGDM for any target domain. It should have a built-in

support to incorporate the QoS into UGDM in order to develop quality-oriented

and time-to-market DCS with lower development and maintenance costs.

� To create the UniFrame System Generation Infrastructure (USGI) to assist in the

generation of QoS-aware DCS during the phase of application engineering based

on the UGDM. The proposed USGI should have a flexible architecture and should

be platform independent. The USGI replaces the manual search for, and

adaptation and assembly of, heterogeneous and distributed components with

automation. It should support the generation of DCS automatically to the extent

feasible and should have the built-in support for the system QoS validation.

1.3 Contributions

The contributions of this thesis are:

� Definition of the UniFrame Generative Domain Model (UGDM). The UGDM has

an inherent consideration of the QoS requirements to assist the need of developing

QoS-aware DCS. The proposed UGDM consists of a set of models to represent

different aspects of a DCS family to assist the automatic system generation and

QoS validation.

� Definition of the UniFrame Domain Specific Language (UDSL) to document

various models in the UGDM in an informal fashion.

� Creation of the UniFrame UGDM Development Process (UGDP) to formulate a

UGDM in assisting the development of a DCS family. The UGDP is a use-case

6

driven, architecture-centric and iterative process. It has a built-in support to

integrate QoS into the UGDM.

� Development of a platform independent UniFrame System Generation

Infrastructure (USGI) for efficiently generating QoS-aware DCS by seamlessly

integrating heterogeneous distributed software components.

� Validation of the above mentioned objectives by a detailed case study involving

an example from the banking domain.

1.4 Thesis Organization

This thesis is organized into eight chapters. Chapter 1 provides an introduction

with the problem definition and motivation, objectives, contributions and thesis outline.

Chapter 2 presents the related work on the generative programming, domain engineering

and application engineering. Chapter 3 provides an overview of the UniFrame research

project, which is the context for this thesis. This chapter also outlines the UniFrame

System-Level Generative Programming Framework (USGPF). Chapter 4-6 describes the

USGPF in detail. USGPF consists of three parts: UniFrame Generative Domain Model

(UGDM), UniFrame UGDM Development Process (UGDP) and UniFrame System

Generation Infrastructure (USGI). Chapter 4-6 describes these three parts respectively.

Chapter 7 describes the design and implementation of a prototype for the USGI. An

example from the banking domain, which serves as the case study for the USGPF, is

developed and demonstrated throughout Chapter 4, Chapter 5 and Chapter 7. Chapter 8

provides a discussion of the features of the USGPF, possible enhancement for the USGPF

as future work and a summary of this thesis.

7

2. BACKGROUND AND RELATED WORK

In the previous chapter a brief introduction is presented, along with the problem

definition, objectives and contributions of this thesis. This chapter provides an overview

of the background and the related work that has influenced the development of the

USGPF.

2.1 Generative Programming

The generative programming is concerned with bringing the automation to the

software development. The goal of the generative programming is to be able to

automatically generate systems from a system family based on given specifications. A

system family is a group of systems that can be built from a common set of assets. The

achievement of this goal requires the development of a model of the system family, a way

to specify system requirements, the availability of components from which the system

can be assembled, and means of mapping the problem specification onto the required

components (out of the available ones) to generate the system using a configuration

generator (or system generator).

In [CZA00], the generative programming paradigm is formally defined as:

“Generative Programming is about manufacturing software products out of components

in an automated way. It requires two steps: a) a design and implementation of a

generative domain model, representing a family of software systems (development for

reuse). This model includes also a domain-specific software generator; b) given a

particular requirements specification, a highly customized and optimized end-product can

be automatically manufactured from implementation components by means of generation

rules (development with reuse)” . The methods presented in [CZA00] can be applied both

8

“ in the small” , i.e., at the level of classes and procedures and “ in the large” , to develop

families of large systems.

The generative programming requires the development of a generative domain

model (GDM). This model consists of a problem space, a solution space, and the

necessary configuration knowledge to map them together (see Figure 2.1). The problem

space consists of application concepts and features that an application programmer can

use to express the requirements for generating systems from a system family. This

problem space can be explored using techniques from the domain engineering. The

solution space is made up of the component implementations in all of their potential

combinations. The configuration knowledge takes into account considerations such as

illegal feature combinations, default settings, default dependencies, construction rules,

and optimization rules. Configuration generators (or system generators, often referred to

simply as generators) are created to implement this knowledge. A configuration generator

is responsible for checking to see if the system can be built, completing the specification

by computing defaults, and assembling the implementation components. An important

concept to keep in mind when designing the problem space is that application

programmers should only be required to specify as much information as is necessary to

identify potentially appropriate components from the generative library. The

Configuration Knowledge
� Illegal feature combinations
� Default settings
� Default dependencies
� Construction rules
� Optimizations

Problem Space
� Domain specific
 concepts and
� Features

 Solution Space
� Elementary
 components
� Maximum
 combinability
� Minimum
 redundancy
� Maximum reuse

Figure 2.1 Elements of a Generative Domain Model
 (from [CZA00, CZA99])

9

programmers should be allowed to specify details or elect to supply some of his own

implementations for specific functionalities if desired.

An important advantage of the separation between the problem space and solution

space is the possibility to evolve both spaces in a relatively independent way. In

particular, new components can be added to the solution space or the existing ones can be

improved. As long as the new components or the improved components can cover the

functionality delineated by the problem space, the existing client code can remain

unaltered. This is so because the client code orders systems and components by means of

the language of the problem space, and the generator takes care of the mapping of the

problem specifications onto the configurations of the new components. Thus, adding new

components only requires modifying the generator. However, this task may not be trivial.

In the UniFrame Approach, which will be reviewed in detail in next chapter, with the

service of the active component management, which dynamically and actively discovers

and registers components deployed over the network, components are separated from the

generator. Thus, when new components are deployed on the network, no modification is

needed for the system generator.

The main steps necessary in the generative programming are identified in

[CZA00]:

� Domain scoping

� Feature and concept modeling

� Designing a common architecture and identifying implementation

concepts

� Specifying domain specific notations for ordering systems

� Specifying the configuration knowledge

� Implementing the components

� Implementing the domain specific notations

� Implementing the configuration knowledge using generators

These steps specify what needs to be done when applying the generative

programming, but not in what order. It is best to perform these steps iteratively and

10

incrementally. These steps are reflected in the USGPF and the meanings of each step will

be discussed in the context of USGPF from Chapter 4 to Chapter 7.

2.2 Product Line Practice

In the component-based software development (CBSD), the domain engineering

phase and the component engineering phase covers the development of reusable assets

(including system architecture, component code, etc) and a production plan for producing

concrete systems from these assets. In the phase of application engineering concrete

systems are generated from these assets. However, in order to successfully introduce and

run CBSD in an organization, a lot of issues have to be addressed. In particular, there are

management and organizational issues concerning the process and the feedback between

different phases. There are concerns about how to successfully transit to a system-family-

oriented development, how to launch and institutionalize it and how to manage the

associated risks. In addition, in order to determine what features are needed now and in

the future, issues like the market analysis and the technology forecasting also need to be

addressed. Furthermore, supports are needed to decide whether to develop components

in-house or to purchase Commercial Off-The-Shelf (COTS) and Commercial Off-The-

Net (COTN) components. Methods to evaluate and test architectures, components,

generic and generative models, are also needed. These issues go beyond the scope of

current component-based software engineering methods [CZA00].

The Product Line Practice (PLP) is directly connected with the generative

programming technique. In 1997, the PLP initiative [SEI02] was launched by the

Software Engineering Institute (SEI), Carnegie Mellon University, to address the

different issues discussed in the previous paragraph. The intention was to help facilitate

and accelerate the transition from the traditional single system development to sound

software engineering practices using a product line approach. In PLP, a software product

line is defined to be a set of software-intensive systems sharing a common, managed set

of features that satisfy specific needs of a selected market or mission, and that are

developed from a common set of core assets in a prescribed way [CLE01, COH00]. A

11

software product line has the same meaning as a system family in the generative

programming. The SEI’s PLP Framework is the first formal attempt to codify the

comprehensive information about successful product lines.

The idea behind the PLP framework is to identify the different issues and

practices relevant to establishing and running successful product lines in an organization.

More information can be found on the PLP Framework website [SEI02a]. The framework

is documented in a living guidebook, which addresses the different practice areas and

contains references to various approaches, methods, case studies, and other materials.

The guidebook is being constantly updated based on a series of workshops run by SEI. It

is available at www.sei.cmu.edu/plp/.

2.3 Domain Engineering Methods and Technologies

The previous two sections briefly described the generative programming

technique for creating a system family and the PLP framework for helping the transition

in this direction. This section provides a brief overview about prominent domain

engineering methods and technologies that has influenced the development of USGPF.

Typically, proposals for large scale software reuse usually introduce a concept of a

software component, along with a design and implementational framework, which allows

for component compositions. All the methods and technologies discussed in this section

reflect this concept and use generative programming techniques. However, none of them

specifically targets DCS and none of them address the heterogeneity in the distributed

computing environment. Furthermore, none of them addresses the QoS issue. The

effective solution to address these issues in the USGPF distinguishes it from these

domain engineering methods and technologies.

2.3.1 DEMRAL

Domain Engineering Method for Reusable Algorithmic Libraries (DEMRAL)

[CZA99a, CZA00] is a specialized domain engineering method aimed at creating a

12

system family in order to maximize component reuse. It describes a complete analysis

and design method for developing reusable libraries in algorithmic areas such as image

processing, numerical computing, and containers.

Table 2.1 Outline of DEMRAL (from [CZA99a, CZA00]

1. Domain Analysis
1.1. Domain Definition

1.1.1. Goal and Stakeholder Analysis
1.1.2. Domain Scoping and Context Analysis

1.1.2.1. Analysis of application areas and existing systems (i.e.
exemplars)

1.1.2.2. Identification of domain features
1.1.2.3. Identification of relationships to other domains

1.2 Domain Modeling
1.2.1. Identification of key concepts
1.2.2. Feature modeling of the key concepts (i.e. identification of

commonalities, variabilities, and feature dependencies/interactions)
2. Domain Design

2.1. Identification of the overall implementation architecture
2.2. Identification and specification of domain-specific languages
2.3. Specification of the Configuration Knowledge

3. Domain Implementation (implementation of the domain-specific languages, language
translators, and implementation components)

The development process of DEMRAL is an iterative and incremental one. The

procedure of DEMRAL is outlined in Table 2.1.This method closely follows the widely

accepted division of the domain engineering to divide the procedure into three phases:

domain analysis, domain design and domain implementation. It was created while

applying the Organization Domain Modeling (ODM) in the development of the matrix

computation library [CZA00]. Although this method is not intended for generating DCS

families, the procedure outline in Table 2.1 can act as a good guideline for developing a

method for generating DCS families and is reflected in the USGPF.

The domain analysis in DEMRAL involves the domain definition and the domain

modeling. The purpose of the domain definition is to establish the domain scope based on

the analysis of stakeholders, who have interests in the ongoing project, their goals and

existing systems. The purpose of the domain modeling is to model the contents of the

13

domain by finding the relevant domain concepts and modeling their features. The domain

modeling involves identification of the key concepts and the feature modeling of these

concepts. By definition, DEMRAL focuses on the domains whose main concept

categories are ADTs (Abstract Data Type) and algorithms. An ADT defines a whole

family of data types. The feature modeling of the key concepts is to develop feature

models of the concepts in the domain to define the common and variable features of the

concept instances and the dependencies between variable features. The purpose of the

domain design is to develop a library architecture, identify implementational components,

specify domain specific languages (DSLs) constituting the application programming

interface to the library, and specify the translation of the DSLs into the target architecture.

The domain design builds on the results of the domain modeling and involves the

following activities: scope the domain model for the implementation, identify packages,

develop target architectures and identify the implementational components, identify the

DSLs, identify interactions between DSLs and specify DSLs and their translation into

target architectures. During the domain implementation phase, different implementational

techniques, such as template meta-programming, preprocessor, compiler, and intentional

programming, etc, are applied to implement different parts of an algorithmic library.

2.3.2 Draco

Draco [NEI80] began as the PhD work of James M. Neighbors. It has been used

and has evolved since 1980. It is now being used to generate commercial software by

Bayfront Technologies, Inc [BAY03]. Draco defines each modeling domain (such as a

network domain or a database domain) by a special purpose programming language of

abstractions and their operations that are specific to that domain. A modeling domain is a

pure abstraction of the knowledge about the domain and makes no a priori commitment

about how any operator or an abstraction in that domain will actually be implemented.

The semantics of these domain specific languages are provided by a set of refinements

that map the abstractions and their operations in a given domain into the abstractions and

operations of other (conceptually lower and more primitive) domains. For any specific

14

expression of operators and operands, there may be several alternative potential

refinements that might apply based upon the context in which the refinement is occurring.

The basic steps in the production of a specific system using a Draco supported

domain-specific high-level language is briefly described here (details can be found in

Draco 1.2 Users Manual [NEI03]). For a problem domain that is understood well enough

to define a domain language suitable for comfortably and easily describing systems in

this domain, define the domain language and describe the domain with this language in

precise meaning, provide relations among the objects and operations of the domain, and

prepare a description of the meaning of the operations and objects in the domain. Specify

components for the objects and operations in the domain. These components are formed

into libraries. A component is a set of refinements each capable of implementing a

domain object or an operation under certain stated conditions while satisfying certain

implementation assertions. A new system can be described in the domain language and

then turned into an internal form, which is used during the transformation and the

refinement. The basic operation during the transformation and the refinement is the

selection of an appropriate set of software components to implement the operations and

objects in the domain which are used in the problem statement. These components then

are specialized by a program transformation to the problem under consideration.

 In summary, three themes dominate the way Draco operates: the use of special-

purpose high-level languages for the domains or problem areas in which many similar

systems are needed; the use of software components to implement problems stated in

these languages in a flexible and reliable way; and the use of program transformations to

tailor the components to their use in a specific context. The theory behind its operations is

described in detail in Neighbors’ PhD thesis [NEI80]. Although Draco is not designed for

creating DCS, these three themes are not tied to creating standalone programs. In

USGPF, these three themes are adopted and modified specifically for the purpose of

generating DCS. USGPF also addresses issues that are not addressed by Draco, such as

QoS, communication patterns and heterogeneity, etc.

15

2.3.2 GenVoca

 GenVoca [BAT92, BAT95, BAT96, BAT02] is the distillation of the designs of

two independently-conceived software system generators for the domains of databases

and communications protocols. It is a tool for defining code constructs at a higher level

than program code. It is a domain-independent model for defining scalable families of

hierarchical systems as compositions of reusable components. The idea behind GenVoca

is to compose objects out of a series of layers. Each layer handles a specific aspect of the

object. Layers can be mixed and matched in a flexible way.

 The distinguished features of GenVoca are realms, components and type

equations. GenVoca defines standardized interfaces called realms which may contain

multiple classes and their methods. GenVoca components are modules that export a

realm interface and encapsulate the implementation of a single design feature. GenVoca

components may also import realm interfaces allowing components to be parameterized

by other components. Such compositions are specified in type equations. Each

component implements a large scale refinement; a composition of components represents

a composition of such refinements. GenVoca provides techniques to decompose existing

applications into reusable and composable components.

 GenVoca requires the definition of standardized realm interfaces as its starting

point. This is usually preceded by a domain analysis which reveals what standardized

interfaces should be supported. Each interface defined represents a subsystem abstraction

whose implementations are specified by families of subsystems (type equations), called

an application family. More specific and detailed information about GenVoca can be

found from the website: http://www.cs.utexas.edu/users/schwartz/.

 In the USGPF, a set of interfaces are also created and standardized for a DCS

domain, and the components need to specify the interfaces it requires and provides. The

system architectures in the USGF also adopt layered architecture. Components in the

USGPF are autonomous entities; however, components in GenVoca are not. GenVoca is

more suitable for modeling and creating standalone programs, but USGPF is designed for

DCS. The GenVoca is a domain independent model; however, the application of

GenVoca to a specific domain creates a domain dependent generator. Any refinement of

16

the domain architecture or the creation of new components requires the modification of

the generator. The modification is error prone. In contrast, the proposed USGPF is

domain independent and avoids this hassle. The USGPF also tries to address issues that

are not considered in GevVoca, for example, QoS of components and systems,

integration of heterogeneous components, etc.

This chapter provides an overview of the background and the related work that has

influenced the development of the USGPF. In next chapter, an overview on the

UniFrame, which is the context for the proposed USGPF, is presented.

17

3. OVERVIEW OF THE UNIFRAME

Chapter 2 provided an overview of the background and related work for this

thesis. This chapter describes the Unified Meta-component Model Framework

(UniFrame) and how it can be used for developing a DCS from a DCS family by

integrating reusable heterogeneous and geographically distributed software components.

The UniFrame project is an attempt towards the unification of the existing and

emerging distributed component models under a common meta-model for the purpose of

enabling discovery, interoperability, and collaboration of components via generative

programming techniques [RAJ00, RAJ01, RAJ02]. It specifies a framework for the

component developers to create, test and verify Quality of Service (QoS) and deploy the

components, and for the application programmers to select and generate a software

solution for the DCS under consideration in an automatic or semi-automatic fashion

(automation to the maximum possibility). The UniFrame consists of the Unified Meta-

component Model (UMM) and the UniFrame Approach (UA). The Unified Meta-

Component Model (UMM) proposed in [RAJ00] is the central theme of the UniFrame.

UA is a component based software engineering process based on UMM for creating a

DCS out of available heterogeneous and distributed software components.

This chapter provides an overview of the UMM and the UA. It also describes the

implementations of various features of the UMM, including the UMM specification, the

UniFrame QoS Framework (UQOS) and the UniFrame Resource Discovery Service

(URDS). The last part of this chapter presents a brief discussion of the UniFrame System-

Level Generative Programming Framework (USGPF), which is a framework for realizing

UA at the system level. The USGPF is the theme of this thesis. The detailed descriptions

about it are presented in the chapters from 4 to 7.

18

3.1 The Unified Meta-Component Model (UMM)

The recent shift in the focus of Object Management Group (OMG) to Model

Driven Architecture (MDA) [OMG01] is a recognition that bridging components to

create DCS requires standardization of not only the infrastructure but also Business and

Component Models. The UMM provides an opportunity to bridge gaps that currently

exist in the standards arena and provides the theoretical foundation for the UniFrame. The

core parts of the UMM are: components, service and service guarantees, and

infrastructure. A brief discussion of UMM is provided below. A detailed description of

the UMM is available in [RAJ00, RAJ01, RAJ02].

3.1.1 Components

 The UniFrame is a component-based framework. Hence, components are the

building blocks of any system built by using the UniFrame. In UniFrame, components are

autonomous entities with non-uniform implementations. This means that the components

may adhere to different distributed computing models and there is no notion of either a

centralized controller or a unified implementational framework. Every component has a

state, an identity, a behavior. Thus, all components have well-defined interfaces and

private implementations. In addition, each component in the UMM has three aspects:

computational aspect, cooperative aspect and auxiliary aspect.

� Computational Aspect

The computational aspect reflects the task(s) carried out by each component. It is a

form of introspection by which every component describes its services to other

components. It in turn depends upon: a) the objective(s) of the task, b) the techniques

used to achieve these objectives, and c) the precise specification of the functionality

offered by the component. The computational aspect of a component is described by

its inherent attributes, which consists of simple textual information containing the

book-keeping information of a component, and functional attributes, which consists

of a formal and precise description of the computation, its associated contracts and

the levels of service that the component offers.

19

� Cooperative Aspect

The cooperative aspect of a component indicates its interactions with other

components. The cooperative aspect of a component may contain: 1) Pre-processing

collaborators - other components on which this component depends upon; and 2)

Postprocessing collaborators - other components that may depend on this component.

� Auxiliary Aspect

In addition to computation and cooperation, mobility, security, and fault tolerance are

necessary features of a DCS. The auxiliary aspect of a component addresses these

features.

3.1.2 Service and Service Guarantees

Services in UniFrame could be a computational effort or an access to underlying

resources. In DCS, it is natural to have several choices for obtaining a specific service.

Thus, each component, in addition to indicating its functionality, must be able to specify

and guarantee the quality of the service offered. The quality of the service offered by a

component plays an important role in whether or not the component is selected for a

given system. It is an indication of a component’s confidence in its ability to carry out a

specified service in spite of the constantly changing execution environment and a

possibility of partial failures. The QoS offered by each component is dependent upon the

computation performed, algorithm used, expected computational effort and resources

required, the cost of each service, and the dynamics of supply and demand.

3.1.3 Infrastructure

The headhunter [SIR02] and the Internet Component Broker (ICB) [RAJ02,

SIR02] constitute the infrastructure of the UMM and allow the creation of distributed

computing systems by a seamless integration of components adhering to different

component models.

20

� Headhunter

The headhunter is responsible for searching and managing heterogeneous and

geographically distributed components. The head-hunters are analogous to binders or

traders in other models. The difference is that the trader is passive, thus, the

components are responsible for registering themselves with the trader. On the other

hand, the head-hunter actively discovers new components and attempts to register

them with itself. A component may be registered with multiple head-hunters. It is also

possible for multiple head-hunters to co-operate with each other in order to discover a

larger number of components.

� ICB

The ICB is intended to act as a mediator between two components adhering to

different component models. An ICB itself is a component defined under the UMM.

It utilizes adapter technology to provide translation capabilities between specific

component architectures. The adapter components achieve interoperability through

wrap and glue technology [LUQ01]. The ICB is analogous to an Object Request

Broker (ORB). The ORB provides the facilities for objects written in different

programming languages to communicate, while the ICB provides the capability to

generate glues and wrappers to allow components belonging to different component

models to communicate.

3.2 The UniFrame Approach (UA)

The UniFrame Approach (UA) is a UMM-based technique for the automatic

production of a DCS from a DCS family. The creation of a software realization of a DCS

using UA has two levels: a) the component level - components are designed and

developed with UMM specifications (which are informal in nature [RAJ01]), tested and

validated against appropriate QoS, then deployed on the network, and b) the system level

– a semi-automatic or automatic generation of a specific DCS product from a DCS

family. The concepts of the generative programming are applied at both levels in the UA.

This thesis describes the application of generative programming at the system level.

21

 Figure 3.1 UA Core Activities

The UA has four core activities to build a DCS as shown in Figure 3.1 [HUA02].

These are: generative domain engineering, component engineering, generative

application engineering, and active distributed component management. The

development process is iterative and there are feedbacks during the first three activities.

These four core activities span both the levels of UA: the component level and the system

level. Generative domain engineering and component engineering correspond to the

domain engineering in [CZA00], aiming at maximizing the reuse of both the components

and the software architecture. Generative domain engineering and generative application

engineering are system-level activities and the component engineering is at the

component level. Active distributed component engineering is involved at both levels.

3.2.1 Generative Domain Engineering

The generative domain engineering consists of activities for identifying

commonalities and variations of the system architecture of a DCS family to create a

GDM. The GDM includes a set of abstract components as the guidelines for developing

reusable concrete components during component engineering phase. Each abstract

component represents one component type and is defined by a UMM specification. This

Active
Distributed
Component
Management

Generative
Application
Engineering

Component
Engineering

Generative
Domain
Engineering

Iteration and feedback
Query and search

22

specification is natural language-like and includes both the functional and nonfunctional

(such as expected QoS properties) aspects of a component [RAJ01]. This specification is

then refined into a formal specification, based upon the theory of Two-Level Grammar

(TLG) [BRY02] and natural language specifications [BRY00]. This activity is the theme

of the UniFrame UGDM Development Process (UGDP), which is presented in detail in

Chapter 5.

3.2.2 Component Engineering

The component engineering phase begins with a natural language-like

specification of a component. During this phase, the abstract components are mapped to

different component models to create concrete components. The concrete components are

tested and validated against the appropriate QoS according to the QoS Catalog [BRA01].

Then these components are deployed over the network to be discovered by the

headhunters. It is worthwhile to note that the generative programming is also carried out

during the component engineering phase.

3.2.3 Active Distributed Component Management

The active distributed component management is the UniFrame resource

discovery service (URDS) [SIR02], which is described in the section 3.5. The URDS

offers the dynamic discovery and management of the heterogeneous software

components and assists in the finding of the required components during the phase of the

generative application engineering.

3.2.4 Generative Application Engineering

 The generative application engineering is the process of building a DCS from a

DCS family based on a GDM. This phase can be outlined in three steps: a) determining

23

the target system and its architecture instance according to the system specification; b)

searching for concrete components for the target system via the headhunters; and c)

assembling and testing the DCS with the QoS validation. The GDM is used to guide this

entire process. The validation of the QoS requirements is carried out both by QoS

composition rules [SUN02, SUN03], which specify how the system QoS or subsystem

QoS can be composed from the QoS of its parts, and by the event grammars [AUG95,

AUG97], which are used as the basis for the system behavior models to trace events like

executing a statement or calling a procedure. This phase is the theme of the UniFrame

System Generation Infrastructure (USGI), which is presented in detail in Chapter 6.

3.3 UMM Specification

The component developers who wish to adopt the UniFrame should adhere to the

UMM specification for a component and specify the parameters in the UMM

specification during the component development and deployment phase. It is the

responsibility of the component developer to ensure that his components meet the UMM

specifications. Table 3.1 provides the UMM specification template for a component. The

remaining of this section provides descriptions for each entry in Table 3.1.

Table 3.1 UMM Specification Template

UMM Specification

1. Component Name: <component name>
2. Component Subcase: <component subcase name>
3. Domain Name: <domain name>
4. System Name: <system family name>
5. Informal Description: <natural language description>
6. Computational Attributes:

6.1 Inherent Attributes:
6.1.1 id: <internet address for a concrete component, or N/A for an abstract

component>
6.1.2. Version: <version expression>
6.1.3 Author: <developer name for a concrete component, or N/A for an

abstract component>
6.1.4 Date: <deployment time for a concrete component, or N/A for an abstract

component>
 (Continued in Table 3.2)

24

Table 3.2 UMM Specification Template (Continued from Table 3.1)

(Continued from Table 3.1)

6.1.5 Validity: <valid time for a concrete component, or N/A for an abstract
component>

6.1.6 Atomicity: <Yes/No>
6.1.7 Registration: <the registering headhunter for a concrete component, or

N/A for an abstract component>
6.1.8 Model: <component model for a concrete component, or N/A for an

abstract component>
6.2 Functional Attributes:

6.2.1 Function description: <natural language description of component
functions>

6.2.2 Algorithm: <list of algorithms>
6.2.3 Complexity: <component complexity for a concrete component, or N/A for

an abstract component>
6.2.4 Syntactic Contract

5.2.4.1 Provided Interface: <list of provided interfaces>
5.2.4.2 Required Interface: <list of required interfaces>

6.2.5 Technology: <technology name for a concrete component, or N/A for an
abstract component>

6.2.6 Expected Resources: <expected resources expression, NONE if not
available for a concrete component, or N/A for an abstract
component>

6.2.7 Design Patterns: <list of used design patterns separated by comma, or
NONE>

6.2.8 Known Usage: <list of known usage separated by semicolon, or NONE>
6.2.9 Alias: <list of alias separated by comma, or NONE>

7. Cooperation Attributes:
7.1 Preprocessing Collaborators: <list of preprocessing collaborators separated by

comma or NONE>
7.2 Postprocessing Collaborators: <list of postprocessing collaborators separated by

comma or NONE>
8. Auxiliary Attributes:

8.1 Mobility: <Yes/No>
8.2 Security: <security level >
8.3 Fault tolerance: <fault tolerance level >

9. Quality of Service
9.1 QoS Metrics: <list of QoS Metrics separated by comma for an abstract component,

or list of detailed QoS Metrics separated by semicolon for a
concrete component>

9.2 QoS Level: <level of QoS >
9.3 Cost: <compensation level >
9.4 Quality Level: <level of quality >

� Component Name: This entry specifies the name of the component that this UMM

specification is about. The name is used to identify the component.

25

� Component Subcase: This entry indicates information related to communication

patterns of functions of the component. The communication patterns reflect the

synchronization aspect of functions and are discussed in Chapter 4 and Chapter 5.

� Domain Name: This entry provides the domain scope for the component, for

example, banking domain.

� System Name: This entry indicates the system family to which this component

belongs to.

� Description: This entry provides an informal description of the services provided by

the component. This information may include unique characteristics of the

component that can not be described in other entries.

� Computational Attributes: This entry describes the computational aspect of the

component in term of the following parameters.

o Inherent Attributes:

� ID: This is a unique string consisting of the host name and the port on

which the component is running along with the name with which the

component binds itself to a registry, for example:

intrepid.cs.iupui.edu:8080/AccountServer.

� Version: This entry indicates the version of the component.

� Author: This entry indicates the authors of the component.

� Date: This entry indicates the deployment time for a concrete

component. It is not applicable for an abstract component.

� Validity: This entry indicates whether a concrete component is valid. It

is not applicable for an abstract component.

� Atomicity: This entry indicates whether the component is atomic.

� Registration: This entry indicates to which headhunter the component

registered to. It is not applicable for an abstract component.

� Model: This entry indicates the component model that the component

adhered to.

o Functional Attributes:

26

� Function Description: This entry provides a description of each of the

functions supported by the component.

� Algorithm: This entry indicates the algorithms utilized by the

component to implement its functionality if the type of the

specification is concrete component. If the specification type is

abstract component, then this entry means the corresponding concrete

components must implement the indicated algorithms, e.g., Quick Sort.

� Complexity: This entry describes the order of complexity of the above

mentioned algorithms implemented by the component.

� Syntactic Contract: This entry provides the computational signature of

the component’s service interface. The interfaces are well defined in

the process of generative domain engineering. Each component must

specify its provided interfaces and required interfaces.

� Technology: This entry indicates the component technology utilized to

implement the component, e.g., J2EE, CORBA, .NET etc.

� Expected Resources: This entry indicates the expected resources for

the component, e.g., CPU, memory.

� Design Patterns: This entry indicates the design patterns employed by

the component.

� Known Usage: This entry indicates the known usages of the

component.

� Alias: This entry indicates the alias names for the component.

� Cooperation Attributes:

o Preprocessing Collaborators: This entry indicates other components on which

this component depends upon.

o Postprocessing Collaborators: This entry indicates other components that may

depend on this component.

� Auxiliary Attributes:

o Mobility: This entry indicates whether the component is mobile or not.

o Security: This entry indicates the security level of the component.

27

o Fault Tolerance: This entry indicates the fault tolerance level of the

component.

� Quality of Service:

o QoS Metrics: Each abstract component should list the QoS metrics that should

be provided by the implementation components (concrete components). For a

concrete component, provided information for each QoS metrics includes: 1)

QoS parameter name; 2) type of parameter: static/dynamic; 3) min/max limit.

If the QoS metric is dynamic, also provide information about: 4) environment

values for the min/max ratings; and 5) variation in parameter values according

to environment.

o QoS Level: A component developer may offer several possible levels of QoS.

This entry is not applicable to an abstract component.

o Cost: This entry indicates the compensation level for the component.

o Quality Level: This entry provides an overall assessment of a concrete

component. It is not applicable to an abstract component.

During the component development and deployment phase, the natural language

specification is converted into a standardized XML-based specification, which can be

automated discovered by the URDS.

3.4 The UniFrame QoS Framework (UQOS)

The concepts of the service and service guarantees are an integral part of every

component in UMM and they also play an important role in the system generation phase

of the UniFrame. The UniFrame QOS (UQOS) framework [BRA01, BRA02, BRA02a] is

an implementation of the service and service guarantees aspect of the UMM.

In order to utilize the Service and Service guarantees of UMM in a real-world

scenario to assure the QoS of a DCS, following issues have to be addressed: 1) a

framework to objectively quantify the QoS of software components; 2) a standardized

QoS Catalog for reference by software component developers and application engineers;

28

3) a standard approach to incorporate the effect of the environment on the QoS of

software components into the component development process; 4) a standard approach to

incorporate the effect of usage patterns on the QoS of software components into the

component development process; and 5) a QoS specification scheme to specify the QoS

of software components. The UQOS framework consists of four parts to facilitate the

solving of these issues:

� The QoS Catalog: This catalog is intended to standardize the notion of quality of

software components. It contains detailed descriptions of QoS parameters of

software components, including the metrics, the evaluation methodologies, the

factors influencing these parameters and the interrelationships among these

parameters. In UMM, every component must specify the quality of service that it

can offer in terms of the QoS parameters, as identified in the QoS Catalog.

� The approach for accounting for the effect of the environment on the QoS of

software components: This provides methods to address the effects of diverse

operating environments such as, CPU, memory, operating system and priority

schemes, on the QoS of a software components. It also suggests how to document

the effect in a software component so that it can be maintained by component

developers and referenced by application developers.

� The approach for accounting for the effect of usage patterns on the QoS of

software components: This consists of an empirical validation of the QoS of the

software components under different usage patterns, such as the pattern of users

and user requests received by components. It also suggests how to document the

effect in a software component so that it can be maintained by component

developers and referenced by application developers.

� The specification of the QoS of software components: The QoS is an integral part

of every software component in the UniFrame. Thus there is a need for a formal

language to specify this non-functional or QoS aspects of any software

component. The specification scheme chosen for the UQOS framework is the

Component Quality Modeling Language (CQML) [AAG01]. CQML is a lexical

language for specifying QoS. It is based on four specification constructs, i.e., QoS

29

characteristics, QoS statements, QoS profiles and QoS categories. CQML meets

the need of the UQOS for a generic and domain independent specification

language, which can seamlessly integrate with object-oriented analysis and

design, can separate the QoS specification from functional specification both

syntactically and semantically, and is compatible with existing interface definition

languages like CORBA IDL.

3.5 The UniFrame Resource Discovery Service (URDS)

This section provides an overview of the UniFrame Discovery Service (URDS)

[SIR02], which is an implementation of the UMM infrastructure. URDS is designed to

provide the infrastructure necessary for discovering and managing a collection of

heterogeneous components for building a DCS. The URDS infrastructure is illustrated in

Figure 3.2. The numbers in the Figure 3.2 indicate the flow of activities in the URDS.

The rest of this section provides a brief description of the components of the URDS.

Figure 3.2 URDS Architecture (from [SIR02])

30

� Internet Component Broker (ICB)

The ICB has been discussed in 3.1.3. It contains the following: Query Manager (QM),

the Domain Security Manager (DSM), Link Manager (LM) and Adapter Manager

(AM). The ICB acts as an all-pervasive component broker in an interconnected

environment. The communication infrastructure necessary to identify and locate

services, enforce domain security and handle mediation between heterogeneous

components are all contained in the ICB. The services that ICB provided are

accessible at well-known addresses. It is anticipated that there will be a fixed number

of ICBs deployed at well-known locations hosted by organizations supporting the

UniFrame Approach.

o Query Manager (QM): The QM translates an application engineer’s requirements

specification for a component into a Structured Query Language (SQL) statement

and dispatches this query to the appropriate head-hunters. The headhunters, in

turn, return lists of components that match the search criteria contained in the

query. The QM and the Link Manager together are responsible for propagating

the queries to other linked ICBs.

o Domain Security Manager (DSM): The URDS discovery protocol is based on

periodic multicast announcements. The multicasting exposes the URDS to

security threats. The DSM is responsible for ensuring that the security and

integrity of the URDS are maintained. The security scheme implemented by the

DSM involves the generation and distribution of secret keys for the ICB. It also

enforces multicast group memberships and controls access to multicast addresses

allocated for a particular domain.

o Link Manager (LM): The LM establishes links between ICBs to form a federation

and propagate the queries received from the QM to the linked ICBs. The ICB

administrator configures the LM with the location information of LMs of other

ICBs with which links are to be established.

o Adapter Manager (AM): The AM acts as registry or lookup service for clients

seeking adapter components. Adapter components register with the AM and at the

31

same time indicate which component models they can bridge efficiently. The AM

is contacted by the clients to locate the adapter components matching their

requirements.

� Headhunter (HH)

The Headhunter has also been discussed in 3.1.3. It is responsible for the detection of

the presence of service providers (service discovery), registration of functionality of

the service providers and returning to the ICB a list of discovered service providers

that match the requirements. Headhunters are specialized UMM components.

� Meta-Repository (MR)

The MR is a database that serves a headhunter by holding the UMM specification

information of exporters. Currently, the MR is implemented as a relational database

using Oracle in the URDS.

� Active-Registries (ARs)

The ARs listen and respond to multicast messages from headhunters. Each also has

introspection capabilities to discover not only the instances, but also the specifications

of the components registered with them. URDS implements them by extending the

native registries or lookup services of component models like RMI, CORBA and

Voyager.

� Services (S1..Sn)

The services may be implemented in diverse component models. Each identifies itself

by the service type name and the XML description of the component’s informal

UMM specification.

� Adapter Components (AC1..ACn)

These components serve as bridges between components implemented in different

component models like (J2EE, CORBA, .NET).

Figure 3.2 also illustrates the users (C1..Cn) of the URDS system who can be the

Component Assemblers, System developers or System Integrators. However, in complete

UniFrame, there will be no direct interaction between the human users and the URDS.

The interaction would be via the interface of the system generator.

32

The URDS architecture is organized as a federated hierarchy as shown in Figure

3.2 in order to achieve scalability. Every ICB has zero or more Headhunters attached to

it. The ICBs in turn are linked together with unidirectional links to form a directed graph.

The URDS discovery process is “administratively scoped”, i.e., it locates services within

an administratively defined logical domain, which refers to industry specific markets

such as Financial Services, Health Care Services, Manufacturing Services, etc. The

domains supported are determined by the organizations providing the URDS service. The

URDS architecture is designed to handle failures through periodic announcements (in

case of Headhunters), ‘heartbeat’ probes (in case of Link Managers) and information

caching.

3.6 The UniFrame System-Level
Generative Programming Framework (USGPF)

The QoS is an integral part of every component in UMM and is inherent in any

systems generated from these components. Thus, the QoS plays an important role in the

entire UniFrame Approach and helps to create QoS-aware DCS from heterogeneous

distributed software components. The UniFrame Approach also shifts from the traditional

software development paradigm of developing single DCS to the paradigm of developing

a DCS family.

The USGPF realizes the UniFrame Approach on the system level. More

specifically, it addresses the generative domain engineering and the generative

application engineering aspects of the software development process in the UniFrame

Approach. The USGPF is divided into three parts:

� The UniFrame Generative Domain Model (UGDM), which defines the common

and variable properties of a DCS family.

� The UniFrame UGDM Development Process (UGDP), which defines the

procedure to efficiently create a UGDM for a DCS family with QoS constraints.

33

� The UniFrame System Generation Infrastructure (USGI), which facilitates the

automatic generation of QoS-aware DCS from a DCS family by integrating

heterogeneous software components.

In summary, this chapter provided an overview of the UniFrame project, including the

UMM, the UniFrame Approach and a brief description of the core tasks of this thesis, the

USGPF. In the following chapters, the details of each part of the USGPF are presented.

Chapter 4 describes the UGDM, Chapter 5 describes the UGDP, Chapter 6 describes the

USGI in high level concepts, and Chapter 7 describes the design and implementation of

the USGI in Java technology.

34

4. THE UNIFRAME GDM (UGDM)

This chapter describes the UniFrame GDM (UGDM), the first part of the

UniFrame System-Level Generative Programming Framework (USGPF). The function of

a UGDM is to capture the common and variable properties of a DCS family in the

USGPF. Before starting the description of the UGDM, this chapter provides a brief

discussion of the feature modeling and the UniFrame Domain Specific Language

(UDSL), which are the tools in the USGPF that are used to model and express the

UGDM stated in this chapter.

4.1 Feature Modeling

The purpose of feature modeling is to develop feature models for concepts or

features in a domain. Feature models define the common and variable features of concept

instances and the dependencies between the variable features. Constraints that can not be

expressed in a feature diagram have to be recorded separately. In the USGPF, this is done

by the constraint expression in the UDSL which is presented in detail in Section 4.2.

Feature modeling [SEI03, KAN90] is a very important contribution to the domain

engineering by the Software Engineering Institute (SEI) of Carnegie Mellon University

and is essential to the generative programming.

As stated in [CZA00], there are two definitions of features found in domain

engineering literature: 1) An end-user-visible characteristic of a system, which is the

definition used in Feature-Oriented Domain Analysis (FODA); 2) A distinguishable

characteristic of a concept (e.g., system, component, and so on) that is relevant to some

stakeholder of the concept. The second definition is more general and is preferred by

Czarnecki and Eisenecker, and is also used in the context of Organization Domain

35

Modeling (ODM) [SIM96, SEI02b], which is also a popular domain engineering method

adopted by Hewlett Packard and others. This work also adopts the second definition,

because the feature modeling can be applied to any level of detail during domain

engineering, which is the case in the UGDM.

Feature diagrams are usually tree-like structures, so they are also called feature

trees. There are two kinds of features in feature diagrams: mandatory features and

optional features. Whether a feature is mandatory or optional depends on its relationship

with its parent in a feature tree. A mandatory feature is a feature that must be included if

its parent is included in the description of a concept instance. An optional feature is a

feature that may be included if its parent is included in the description of a concept

instance. Sub-features of a feature can be grouped. There are two kinds of groups/sets:

alternative and or. For an alternative set, if the parent of the alternative set is included,

then exactly one feature in the alternative set is included in a concept instance. For an or

set, if the parent of the or set is included, then any non-empty set of the or set can be

included in a concept instance.

In the feature diagram, each feature is represented as a box. These features are

then arranged in a hierarchical manner. Each feature is decomposed until it is presented at

the level of interest to the users. For example, as a distributed computing system is

implemented as a collection of distributed components, when modeling distributed

computing system architecture in the UniFrame at the system level, the root node of a

feature diagram is the target system, the inner nodes are subsystems, and the leaf nodes

are abstract components, which are the blueprints for creating concrete components.

Two kinds of feature notations are used in a feature diagram to represent

mandatory features and optional features respectively. A mandatory feature is

represented by a box with a simple edge ending with a filled circle touching it. An

optional feature is represented by a box with a simple edge ending with an open circle

touching it. There are also two kinds of notations used in the feature diagram to model a

grouping. An alternative set is represented by edges connected by an arc. An or set is

represented by edges connected by a filled arc. See figure 4.1a for an example. The

details of feature notations are described in [CZA00].

36

Variation points are the features which have one or more direct optional sub-

features, and/or groups. In [CZA00], the authors apply the alternative and or with the

mandatory features. However, this conflicts with the definition of the mandatory feature.

Thus, some of the five types of variation points identified by the authors are not

considered valid in UGDM. In UGDM, if a feature is mandatory, it cannot be a variable

feature to its parent. Thus, only optional features can be used in alternative and or in the

UGDM. This modification is necessary as it is consistent with the definition of one-of

and more-of in the UniFrame Domain-Specific Language (UDSL). The modification does

not reduce the feature diagram’s ability to represent the common and variable features. It

makes the semantics clearer. Figure 4.1 shows three basic variation points in the UGDM.

In the figure, a) means zero or more, which can be described by all in the UDSL; b)

means exactly one, which is an alternative and can be described by one-of in the UDSL;

and c) means one or more, which is an or and can be described by more-of in the UDSL.

Detail explanations are presented in the next section.

4.2 The UniFrame Domain Specific Language (UDSL)

The UniFrame Domain Specific Language (UDSL) is the tool in USGPF to

represent the UGDM in a textual format. It is a special DSL specifically designed to be

used in the USGPF. It can represent both the information contained in feature diagrams

C1

f1 f2 f3

C1

f1 f2 f3

C1

f1 f2 f3

Figure 4.1 Types of Basic Variation Points in Feature Modeling

a) zero or more

b) exactly one

c) one or more

37

and those that can not be shown in feature diagrams. Before presenting the detail of the

UDSL, a brief introduction to the DSL is presented in this section.

4.2.1 Introduction to Domain-Specific Language

A domain specific language (DSL) is a specialized, problem-oriented language.

van Deursen [VAN00] provided a definition for the DSL as follows: “A domain-specific

language (DSL) is a programming language or executable specification language that

offers, through appropriate notations and abstractions, expressive power focused on, and

usually restricted to, a particular problem domain.” Domain specific language can be

textual (e.g., SQL) or graphical. Well-known examples of DSLs are SQL, HTML and

Make. DSLs are usually declarative. Consequently, they can be viewed as specification

languages, as well as programming languages.

DSLs play an important role in generative programming because they are not only

used to “order” concrete members of a system family, but also used to specify a system.

The feature diagram can be expressed by a domain specific language. Feature modeling

and DSL together can be used to specify a system or a family of systems to any level of

detail. They can have different levels of specialization. There can be more general

modeling DSLs, for example, for expression synchronization constraints, or more

specialized, application-oriented DSLs. In general, several different DSLs are needed to

specify a complete application. Furthermore, several different DSLs can be designed for

different categories of target users to specify one single application aspect, for instance, a

version for novice users and a version for advanced users.

4.2.2 Detail of the UDSL

Varghese [VAR02] modified the DSL method proposed by van Deursen and Klint

[VAN02] to model and document the problem space of a domain that may involve a

distributed heterogeneous environment. This modified version is adopted in this work

with more modifications and is enhanced to create the UniFrame Domain Specific

38

Language (UDSL) to model and document the UGDM for a distributed computing

domain. The UDSL in Backus-Naur Form (BNF) is summarized in Table 4.1 and Table

4.2. Keywords used in the UDSL are shown in lower case with italic font in the tables.

The UDSL consists of four types of expressions to model and document a UGDM for a

DCS family by the UniFrame Approach: feature expressions, constraint expressions,

design feature expressions and use case expressions. These are discussed in the following

sections.

Table 4.1 BNF Definition of the UDSL

UniFrame Domain Specific Language (UDSL)

<UDSL-expression> ::= <feature-expression> | <constraint-expression> | <design-feature-expression> |

<use-case-expression>

1. Feature Expression (Commonality and Variation)

<feature-expression> ::= <optional-feature> | <mandatory-feature> | <composite-feature> |
<non-exclusive-feature> | <alternative-feature>

<optional-feature> ::= <feature>?
<mandatory-feature> ::= <feature> | <feature>!
<composite-feature> ::= all (<feature-list>)
<non-exclusive-feature> ::= more-of (<optional-feature-list>)
<alternative-feature> ::= one-of (<optional-feature-list>)
<feature-list> ::= <mandatory-feature-list> | <optional-feature-list> |

<mandatory-feature-list>, <optional-feature-list> |
<optional-feature-list>, <mandatory-feature-list> |
<mandatory-feature-list>, <optional-feature-list>, <mandatory-feature-list> |
<optional-feature-list>, <mandatory-feature-list>, <optional-feature-list>

<mandatory-feature-list> ::= <mandatory-feature> | <mandatory-feature>,
<mandatory-feature-list>

<optional-feature-list> ::= <optional-feature> | <optional-feature>, <optional-feature-list>
<feature> ::= <atomic-feature> | <feature-expression>
<atomic-feature> ::= FEATURE

2. Constraint Expression

<constraint-expression> ::= <multiplicity-constraint> | <default-constraint> |
<mapping-constraint> | <satisfaction-constraint>

2.1 Multiplicity Constraint

<multiplicity-constraint> ::=
multiplicity ((<feature>, <feature>) : <multiplicity-expression>)

<multiplicity-expression> ::= NATURAL-NUMBER | NATURAL-NUMBER..* |
NATURAL-NUMBER..NATURAL-NUMBER

(Continued in Table 4.2)

39

Table 4.2 BNF Definition of the UDSL (Continued from Table 4.1)

UniFrame Domain Specific Language (UDSL)

(Continued from Table 4.1)

2.2 Default Constraint
<default-constraint> ::= default (<feature>: <feature>)

2.3 Mapping Constraint
<mapping-constraint> ::= map (<feature> : <feature>)

2.4 Satisfaction Constraint
<satisfaction-constraint> ::= <require-constraint> | <reject-constraint> |

<mutual-require-constraint> | <include-constraint> | <exclude-constraint>
<require-constraint> ::= require (<feature-list>)
<reject-constraint> ::= reject (<feature-list>)
<mutual-require-constraint> ::= mutual_require(<feature-list>)
<include-constraint> ::= include (<feature>, <feature>)
<exclude-constraint> ::= exclude (<feature>, <feature>)

3. Design Feature Expression

<design-feature-expression> ::= <design-feature-interaction> | <design-feature-interface>
<design-feature-interaction> ::= interact (<design-feature>, <design-feature>)
<design-feature-interface> ::= interface (<design-feature>: provided_interface (<interface-

list>), required_interface (<interface-list>))
<interface-list> ::= INTERFACE | INTERFACE, <interface-list>
<design-feature> ::= SYSTEM | SUBSYSTEM | ABSTRACT-COMPONENT

4. Use Case Expression
<use-case-expression> ::= <use-case-component-level> | <use-case-function-level>
<use-case-component-level> ::= USE-CASE : path_c (<abstract-component-list>)
<use-case-function-level> ::= USE-CASE : path_f (<function-call-list>)
<abstract-component-list> ::= ABSTRACT-COMPONENT | ABSTRACT-COMPONENT,

<abstract-component-list>
<function-call-list> ::= <function-call> | <function-call>, <function-call-list>
<function-call> ::= ABSTRACT-COMPONENT.FUNCTION[<communication-pattern>]
<communication-pattern> ::= cp1 | cp2s | cp2a

The UDSL is used to express not only the feature diagrams, but also other models

in the UGDM, such as the Critical Use Case Model (CUCM), QoS Composition and

Decomposition Model (QCDM), etc. Models expressed by the UDSL can be further

formally expressed by two-level grammar (TLG)[BRY02]. The work on using TLG to

formally express the UGDM is underway at University of Birmingham, a collaborator of

the UniFrame research.

40

4.2.2.1 Feature Expressions

The feature expression is used to express the commonality and variation of a

feature diagram in the UGDM. There are five types of feature expressions: optional

feature, mandatory feature, composite feature, non-exclusive feature and alternative

feature.

� <optional-feature> ::= <feature>?

An optional feature is expressed as a feature followed by a question mark. An

optional feature means this feature may be included if its parent is included in the

description of a concept instance. An example of an optional feature is presented in

the description of the composite feature below.

� <mandatory-feature> ::= <feature> | <feature>!

A mandatory feature is expressed as a feature followed by an exclamation mark. The

exclamation mark can be omitted. A mandatory feature means this feature must be

included if its parent is included in the description of a concept instance. An example

of a mandatory feature is presented in the description of the composite feature below.

� <composite-feature> ::= all (<feature-list>)

A composite feature is composed from features in the feature list. It is defined as a

feature list preceded by the all keyword. Features in this feature list can be optional,

mandatory, or a mixture of both. If all the features in this feature list are optional, it

represents the “zero or more” variation point as shown in Figure 4.1. If the feature list

consists of only one feature, then the keyword all can be omitted. For example, in the

expression, UserSubsystem : all (ATM?, CashierTerminal), the composite feature

UserSubsystem is composed from ATM which is an optional feature and

CashierTerminal which is a mandatory feature. In this example, Usersubsystem is the

parent of ATM and CashierTerminal, thus if UserSubsystem is included in a system

description, CashierTerminal must be present; however, ATM may be present.

� <non-exclusive-feature> ::= more-of (<optional-feature-list>)

A non-exclusive feature is defined as an optional feature list preceded by the more-of

keyword. Every feature in the feature list may be present; however, there must be at

least one feature to be present if the non-exclusive feature is present. It expresses the

41

“one or more” variation point as shown in Figure 4.1. It has the meaning of or in a

feature model. If the feature list consists of only one feature, then the keyword more-

of can be omitted. For example, in the expression, TransactionServerSubsystem:

more-of (DeluxeTransactionServer, EconomicTransactionServer), the non-exclusive

feature TransactionServerSubsystem is defined by the optional feature list

(DeluxeTransactionServer, EconomicTransactionServer); thus, it can be either one of

the two optional features in the optional feature list or can be both of them, i.e., there

are three possibilities for TransactionServerSubsystem.

� <alternative-feature> ::= one-of (<optional-feature-list>)

An alternative feature is defined as an optional feature list preceded by the one-of

keyword. It expressed the “exactly one” variation point as shown in Figure 4.1. It has

the meaning of alternative in a feature model. If the feature list consists of only one

feature, then the keyword one-of can be omitted. For example, in the expression,

IAccountDatabase: one-of (IAccountDatabase1, IAccountDatabase2), the alternative

feature IAccountDatabase is defined as either IAccountDatabase1 or

IAccountDatabase2.

In the UDSL, a feature list is a list of features without any ordering constraints.

Features in a feature list can be optional or mandatory. Thus, a feature list may consist of

only optional features, only mandatory features or a mixture of both in any order. An

optional feature list is a special feature list in which all features are optional. A

mandatory feature list is another special feature list in which all features are mandatory.

Since the feature lists in non-exclusive features and alternative features are all optional

feature lists, the question mark can be omitted for the optional features in these lists.

4.2.2.2 Constraint Expressions

Constraints reveal the relations that cannot be deduced from feature expressions.

It further limits the variability of a feature diagram. In the UDSL, there are four

categories of constraint expressions: multiplicity constraint, default constraint, mapping

constraint and satisfaction constraint.

42

4.2.2.2.1 Multiplicity Constraint

The multiplicity constraint reveals the multiplicity relationship between different

features. The syntax for this constraint expression is defined as:

� <multiplicity-constraint> ::=

 multiplicity ((<feature>, <feature>) : <multiplicity-expression>)

The keyword for the multiplicity expression is multiplicity. The expression follows

the UML convention in expressing multiplicity. The multiplicity for the first feature

is 1 and the one for the second feature is indicated by the multiplicity expression. The

meaning is for one instance of the first feature, how many instances of the second

feature are related. For example, in the expression, multiplicity ((Bank,

TransactionServerManager) : 1), each Bank is related to one copy of

TransactionServerManager.

The multiplicity expression used in the multiplicity constraint includes: 1)

NATURAL-NUMBER, which is any non-negative integer; 2) NATURAL-NUMBER..* ,

which means at least the number specified by NATURAL-NUMBER. Two special cases

are 0..* , which means zero or more, and 1..* , which means one or more; 3) NATURAL-

NUMBER..NATURAL-NUMBER, which denotes the range specified by the two

NATURAL-NUMBER in the expression, the second one of which must be larger. Other

multiplicity expressions can also be defined when needed.

4.2.2.2.2 Default Constraint

The default constraint is used to express the default value in a feature expression.

There is only one expression in this category. The syntax for this expression is defined as:

� <default-constraint> ::= default (<feature>: <feature>)

The keyword for the default expression is default. The expression means the default

feature for the first feature is the second feature in the expression. The first feature is

usually a variation point and the second feature is a sub-feature of the first feature.

For example, in the expression, default (UserSubsystem: CashierTerminal),

43

UserSubsystem is a variation point as shown in the example of composite feature, the

default for it is CashierTerminal.

4.2.2.2.3 Mapping Constraint

The mapping constraint is used for mapping from one model to another model in

the UGDM. The mapping can be considered as a kind of transformation. It can relate

different models, or it can reveal more detailed lower level information from one model

to anther in a hierarchical setting. Examples of mapping are the architecture to critical use

case model mapping at function/interface level and the architecture model mapping,

which are shown in Section 4.3.

� <mapping-constraint> ::= map (<feature>, <feature>)

The keyword for the mapping constraint is map. The expression means that the first

feature is mapped to the second feature in the expression. The mapping is not

reversible, i.e., it is not symmetric. However, the mapping is transitive. For example,

in the expression, map (BankCase1: BankCase1_1), BankCase1 is an architecture

instance at the abstract component level, BankCase1_1 is an architecture instance at

the function/interface level, and BankCase1 is mapped to BankCase1_1.

BankCase1_1 consists of more detailed information than BankCase1 about the system

architecture and the reverse mapping loses information, which will become clear in

Chapter 5. That is why mapping constraint is not reversible.

4.2.2.2.4 Satisfaction Constraint

The satisfaction constraint reflects the constraints identified in van Deursen and

Klint’s work [VAN02] with slight modifications and some enhancements. The

satisfaction constraint includes five types of constraints in the UDSL: require constraint,

reject constraint, include constraint, exclude constraint and mutual_require constraint.

The first four types have the same semantics as requires, excludes, include and exclude

respectively in van Deursen’s work. The mutual_require constraint is added to the

44

satisfaction constraints in the UDSL to simplify the expression of the situation in that a

list of features must all be present or none is present. In [VAN02], the satisfaction

constraints are classified into two categories: diagram constraints and user constraints.

The diagram constraints express fixed and inherent dependencies across features in a

feature model. The user constraints express the user requirements regarding the presence

or absence of a feature, thus, it is used in the application engineering to specify system

requirements. The diagram constraints consist of require constraint, reject constraint and

mutual_require constraint. The user constraints consist of include constraint and exclude

constraint. Following is the syntax and brief description of each satisfaction constraint.

� <require-constraint> ::= require (<feature>, <feature>)

This satisfaction rule expresses the constraint that if the first feature is present, then

the second feature must be present as well. The keyword to express this kind of

constraint is require. For example, the expression, require (SavingAccount,

InterestRate), means SavingAccount is associated with InterestRate. However, the

reverse might not be true. For example, InterestRate can be associated with

MoneyMarketAccount, not SavingAccount.

� <reject-constraint> ::= reject (<feature>, <feature>)

This satisfaction rule expresses the constraint that if the first feature is present, then

the second feature must not be present. The keyword to express this kind of constraint

is reject. Fore example, the expression, reject (CheckingAccount, InterestRate),

means CheckingAccount can not be associated with InterestRate. The reverse is also

true in this rule. InterestRate can not be associated with CheckingAccount.

� <mutual-require-constraint> ::= mutual_require (<feature list>)

This satisfaction rule expresses the constraint that if any feature in the feature list is

present, all other features in the feature list must be present as well. There can be

more than two features in the expression. The keyword to express this kind of

constraint is mutual_require. For example, the expression, mutual_require (ATM,

CustomerValidationServer), means ATM and CustomerValidationServer must be

present together, or none of them is present.

45

� <include-constraint> ::= include (<feature list>)

This satisfaction rule expresses the constraint set by users that the features included

in the feature list must be present in a generated system to satisfy the system

requirement. The keyword to express this kind of constraint is include. For example,

the expression, include (ATM), means the user requires the generated system to

contain ATM.

� <exclude-constraint> ::= exclude (<feature list>)

This satisfaction rule expresses the constraint set by users that features in the feature

list must not be present in a generated system. The keyword to express this kind of

constraint is exclude. For example, the expression, exclude (ATM), means the user

requires the generated system must not contain ATM.

4.2.2.3 Design Feature Expressions

Design features are used to capture a hierarchical system architecture in the

UGDM. A hierarchical system architecture in the USGPF is formed into layers. Elements

in layers are classified into three types that are captured as design features: system,

subsystem and abstract component. The root of a system architecture hierarchy is a

design feature of system. The leaves of a system architecture are design features of

abstract component. The rest of a system architecture are design features of subsystem.

The rationale is that a system is composed from a set of subsystems, a subsystem is

composed from a set of abstract components, and abstract components are the building

blocks. Thus a subsystem can be viewed as a composite component. The detail about this

hierarchical architecture is described in Chapter 5. The purpose of design feature

expressions is to capture the interfaces of design features and the interactions between

design features. An interface here is defined as a set of published functionality available

to public invocation.

� <design-feature-interaction> ::= interact (<design-feature>, <design-feature>)

This statement says the first design feature interacts with the second design feature.

The first feature is the initiator of this interaction and the second feature is the

46

responder of this interaction. The interaction expressed in this rules reflect the

cooperative aspect of components in the UniFrame. The first design feature is the

preprocessing collaborator of the second design feature and the second design feature

is the post-processing collaborator of the first design feature. If both design features

can be the initiator of the interaction, that is, they are peers; then, two statements of

design feature interaction are required to capture this kind of interaction. One special

case of this rule is that the first design feature can be users. Thus, it can be extended

to describe user-system interactions. The keyword for this expression is interact. For

example, the expression, interact (CashierTerminal, CashierValidationServer),

reveals the interaction between CashierTerminal and CashierValidationServer, and

CashierTerminal is the initiator of the interaction.

� <design-feature-interface> ::= interface (<design feature>: provided_interface

(<interface-list>), required_interface (<interface-list>))

This statement expresses the provided interfaces and required interfaces for a design

feature. The provided interfaces are those interfaces provided by a design feature to

other design features. The required interfaces are those interfaces required by this

design feature from other design features. The interfaces in the interface-list are

defined for a domain during UGDP. Detail of how to develop these interfaces is

presented in Chapter 5. For any design feature, it must provide an interface for other

design features. However, it may not require any interfaces from any other design

feature. Thus, the interface list for the required interface may be empty. When it is

empty, denote it as NONE. There are three keywords in this expression to achieve the

necessary semantics: interface, provided_interface and required_interface. For

example, the expression, interface (DeluxeTransaxtionServer: provided_interface

(IAccountManagement, ICustomerManagement), required_interface

(IAccountDatabase)), states that the provided interfaces for DeluxeTransaxtionServer

are IAccountManagement and ICustomerManagement, and the required interface for

DeluxeTransaxtionServer is IAccountDatabase.

47

4.2.2.4 Use Case Expressions

A use case expression captures the realization of a use case in a sequence

diagram. It is an ordered sequence of abstract components or function calls, depending on

the level of detail. A use case can be described at two levels, abstract component level

and function/interface level as indicated by the two use case expressions.

� <use-case-component-level> ::= <use-case> : path_c (<abstract-component-list>)

This statement describes the expression for a use case at the abstract component level.

At the abstract component level, a use case is described by a set of abstract

components. An ordered sequence of interactions of these abstract components

realizes the use case. The first abstract component in the list is the initiator of this use

case. For example, the expression, DepositMoneyCase1: path_c (CashierTerminal,

DeluxeTransactionServer, AccountDatabase), means the use case

DepositMoneyCase1 is realized by the cooperation of following three components in

order: CashierTerminal, DeluxeTransactionServer, and AccountDatabase, i.e,

CashierTermianal communicates with DeluxeTransactionServer, which then

communicates with AccountDatabase. Angular brackets are used to enforce another

order constraint. For example, OpenAccountCase2: path_c (<CashierTerminal,

TransactionServerManager>, EconomicTransactionServer), means the use case

OpenAccountCase2 is realized by the cooperation of the three components in the

following way: CashierTerminal firstly communicates with

TransactionServerManager, then it communicates with EconomicTransactionServer.

� <use-case-function-level> ::= <use-case> path_f (<function-call-list>)

This statement describes the path for a use case at the function/interface level. At the

function/interface level, the use case is described by a set of function calls. An

ordered sequence of function calls realizes the use case. The first function call in the

list is the initiating function call of this use case. The syntax for a function call is

presented next in this section. For example, the expression, DepositMoneyCase1_1:

path_f (CashierTerminal.deposit[cp2s] , DeluxeTransactionServer.deposit[cp2s] ,

AccountDatabase.getAccount[cp2s] , AccountDatabase.saveAccount[cp2s]), reveals

48

the ordered sequence of function calls that realizes the use case

DepositMoneyCase1_1.

� <function-call> ::= <abstract-component>.<function>[<communication-pattern>]

This provides the syntax for a function call in the UGDM. A function call is an

interaction between two components. An initiator component calls a function

provided by a responder. The syntax specifies the abstract component that provided

the function, the name of the function and the associated communication pattern for

the function. The communication pattern provides information about parallelism, i.e.

the synchronization aspect of function calls. The basic communication patterns

considered are:

o one way: This communication pattern is denoted as cp1. It describes the

situation in which an initiator initiates an interaction but it does not expect

any response from a responder. Thus the initiator calls the responder and

then continues to do its work.

o two way synchronous: This communication pattern is denoted as cp2s. It

describes the situation in which an initiator initiates an interaction and

waits until it receives a response from the responder before it can do

anything else.

o two way asynchronous: This communication pattern is denoted as cp2a. It

describes the situation in which an initiator initiates an interaction and

expects a response from the responder. However, it does not wait for the

response. Instead, it continues to do other things. When the response

comes, then it reacts to the response. Thus, the communication happens in

an asynchronous manner.

4.2.3 Three Forms of the Feature Description
for a Feature Diagram in the UDSL

As stated above, a feature diagram can be expressed using the UDSL. The feature

description for a feature diagram in the UDSL is organized into three forms: hierarchical

form, normalized form and disjunctive normal form. The hierarchical form is the direct

49

textual description of a feature diagram. Given a direct textual representation of a feature

diagram, further operations like normalization and expansion can be applied to transform

the hierarchical form into other forms. The normalization rules and expansion rules stated

in [VAN02] are adopted in this work and are shown in Appendix A and each rule is

followed by a simple description. Examples of applying these rules on feature diagrams

are developed in Chapter 5. The possible implementation of these rules and the constraint

checking during applying these rules by Generic Modeling Environment [GME] are

discussed in Chapter 8. These transformations are important because they are the process

to produce distinctive and customized instances from a system family described by a set

of feature diagrams with common and variable properties.

Table 4.3 Feature Description of TransactionSubsystem in the Hierarchical Form

An Example of Feature Description in the Hierarchical Form

TransactionSubsystem: all (TransactionServerManager, one-of (EconomicTransactionSubsystem,

DeluxeTransactionSubsystem))
EconomicTransactionSubsystem: EconomicTransactionServer
DeluxeTransactionSubsystem: all (DeluxeTransactionServer, AccountDatabase)

[Account
Database]

[Economic
Transaction
Server]

[Transaction
ServerManager]

(Transaction
Subsystem)

[Deluxe
Transaction
Server]

(EconomicTransaction
Subsystem)

(DeluxeTransaction
Subsystem)

Figure 4.2 Feature Diagram of TransactionSubsystem
in the Banking Domain Example

50

4.2.3.1 Hierarchical Form

The hierarchical form is the direct description of a feature diagram as a textual

expression. It expresses the feature diagram from the root to the leaves. The first

statement in the hierarchical form is the expression for the root feature (or concept) in

terms of all its direct children in the feature diagram. The rest of statements in the

hierarchical form describe inner features in the feature diagram in terms of their direct

children. Figure 4.2 shows the feature diagram for the TransactionSubsystem developed

in Chapter 5 for the banking domain example. Table 4.3 shows the description of this

feature diagram in hierarchical form in the UDSL.

4.2.3.2 Normalized Form

The hierarchical form can be transformed into normalized form, which expresses

the root feature (or concept) in terms of the leave features without the inner features in a

feature diagram. The way to transform a hierarchical form into a normalized form is

simple: for the root expression in the hierarchical form, substitute features in the right

hand side of the expression until all the features in the right hand side are leaf features;

then apply the normalization rules as described in van Deursen’s work [VAN02]. The

purpose of the normalization is to simplify the feature expression by removing the

duplicate features and restructuring the expression. Table 4.4 shows an example of

feature description in the normalized form derived from the hierarchical form shown in

Table 4.3 for TransactionSubsystem.

Table 4.4 Feature Description of TransactionSubsystem
in the Normalized Form

An Example of Feature Description in the Normalized Form

TransactionSubsystem: all (TransactionServerManager, one-of (EconomicTransactionServer,

all (DeluxeTransactionServer, AccountDatabase)))

51

4.2.3.3 Disjunctive Normal Form

The normalized form can be further transformed into disjunctive normal form,

which is defined as follows in van Deursen and Klint’s work [VAN02]:

one-of (all (A11, …, A1(n1)), …, all (Am1, …, Am(nm)))

The outermost operator of a disjunctive normal form is one-of, and its arguments are all

alls with arguments of only mandatory feature lists containing leave features. The

resulting representation is essentially a list of all possible configurations. This

transformation is done by the expansion rules described in van Deursen and Klint’s work

[VAN02]. During this transformation, each disjunct is checked against the appropriate

constraints to determine whether the disjunct is valid or not. Table 4.5 shows an example

of a feature description in the disjunctive normal form derived from the normalized form

shown in Table 4.4 for TransactionSubsystem. This example shows two disjuncts for

TransactionSubsystem, which means two designs.

Table 4.5 Feature Description of TransactionSubsystem
in the Disjunctive Normal Form

An Example of Feature Description in the Disjunctive Normal Form

TransactionSubsystem: one-of (all (TransactionServerManager, EconomicTransactionServer),
 all(TransactionServerManager, DeluxeTransactionServer, AccountDatabase))

4.2.4 Implementation of the UDSL

Many DSLs are supported by a DSL compiler which generates applications from

a DSL program. In this case, the DSL compiler is referred to as an application generator

in the literature [CLE88]. A DSL is usually implemented in two steps: 1) firstly, construct

a library that implements the semantic notations; 2) secondly, design and implement a

compiler that translates DSL programs to a sequence of library calls. The UDSL is

implemented in an analogous way in the USGPF. Firstly, the UGDM described by the

UDSL is constructed into a UGDM Knowledge Base (UGDMKB), which can consist of

both databases and libraries. Secondly, a system generator which consists of the

52

processing logics of the UGDM is designed and implemented. This will become clear in

the latter chapters.

4.3 The UniFrame GDM (UGDM)

The outline for the UGDM is shown in Table 4.3. The UGDM consists of three

parts: general information, which includes a description for the domain modeled; a

problem space, which an application programmer can use to specify the needs; and a

solution space, which contains various models including configuration knowledge to

provide solutions for a DCS family. The detailed description of the UGDM is in the

coming sections with examples from a banking domain developed in Chapter 5. The

complete UGDM for the banking domain example is provided in Appendix J.

Table 4.6 Outline of the UGDM

Outline of the UGDM
1. General Information

1.1 Domain Name
1.2 System Family Name
1.3 Version
1.4 Date
1.5 Author
1.6 Description

2. Problem Space
2.1 Use Case Model
2.2 QoS Requirement Model
2.3 Architecture Model in Hierarchical Form
2.4 System-Level Multiplicity Model

3. Solution Space
3.1 Architecture-Related Models

3.1.1 Architecture Model in Disjunctive Normal Form (Abstract Component Level)
3.1.2 Architecture Model in Disjunctive Normal Form (Function/Interface Level)
3.1.3 Architecture Model Mapping
3.1.4 Abstract Component Interaction Model
3.1.5 Component-Level Multiplicity Model

3.2 Design-Feature-Related Models
3.2.1 Interface Model
3.2.2 Abstract Component Interface Model
3.2.3 Abstract Component Model

3.3 QoS-Related Models
3.3.1 Critical Use Case Model (Function/Interface Level)
3.3.2 Architecture Model in Disjunctive Normal Form and Critical Use Case Model

Mapping (Function/Interface Level)
3.3.3 QoS Composition and Decomposition Model (QCDM)

53

4.3.1. General Information in the UGDM

This section of the UGDM provides the general information about a DCS family

that is captured and modeled by the UGDM. The general information includes a domain

name, a system family name, a version number, a creating date, authors and an informal

brief description for the DCS family.

� Domain Name: This entry describes the full name of a domain. Domain names are

organized into a hierarchical structure for the simplicity. The root of the hierarchy is

represented as /. The root consists of multiple top domains, such as finance,

transportation, communication, etc. Each top domain consists of multiple sub-

domains. For example, the finance domain may be divided into insurance, banking,

mortgage, etc. The separator between a domain or a sub-domain and its sub-domains

is also /. Thus the name looks like an absolute path name of a file. For example, the

name for the banking domain can be /Finance/Banking.

� System Family Name: This entry describes the name of the system family in a DCS

domain that this UGDM models. This can also be viewed as a sub-domain for the

domain indicated in the above entry. However, they are different. Systems are

standalone concrete entities in the world, but domains and sub-domains in the above

entry are abstract higher level concepts. For example, the system family name for the

example developed in Chapter 5 is Bank, which represents the real world system. It is

from the Banking sub-domain in the Finance domain. Finance and Banking are

higher abstract concepts.

� Version: This entry documents the version of the UGDM for a domain. As the

development of a UGDM for a domain is an iterative and incremental process, a

UGDM for a domain evolves over time. The notion of version is the way to track the

history.

� Date: This entry documents when this UGDM was developed.

� Author: This entry shows the developers, maintainers or the responsible organizations

for this UGDM.

54

� Description: This entry provides an informal text description for the system family to

be described in this UGDM. This includes special information or characteristics that

can not be captured by other entries of the UGDM.

4.3.2 Problem Space in the UGDM

This section of the UGDM consists of three models: Use Case Model (UCM),

QoS Requirement Model (QRM) and Architecture Model in Hierarchical Form (AMHF).

These models provide problem related domain specific concepts and features.

Information provided by these models can be used to express an “order” for a system

from a DCS family by users (system integrators, or application engineers).

Table 4.7 An Example of UCM

Use Case Model of the Banking Domain Example

1. Commonality and Variation
Bank: all (ManageCustomers, ManageAccounts, Login-exitAccount, ValidateUsers)
ManageCustomers: all (OpenAccount, CloseAccount)
ManageAccounts: all (ManageAccounts_Cashier, ManageAccounts_Customer?)
ManageAccounts_Cashier: all (WithdrawMoney_Cashier, DepositMoney_Cashier,

TransferMoney_Cashier, CheckBalance_Cashier)
ManageAccounts_Customer: all (WithdrawMoney_Customer,

DepositMoney_Customer, TransferMoney_Customer, CheckBalance_Customer)
ValidateUsers: all (ValidateUsers_Cashier, ValidateUsers_Customer?)
Login-exitAccount: all (Login-exitAccount_Cashier, Login-exitAccount_Customer?)

2. Constraint Expression

2.1 Default Constraint
default (ManageAccounts: ManageAccounts_Cashier)
default (ValidateUsers: ValidateUsers_Cashier)
default (Login-exitAccount: Login-exitAccount_Cashier)

2.2 Satisfaction Constraint
mutual_require (ValidateUsers_Customer, ManageAccounts_Customer, Login-

exitAccount_Customer)

55

4.3.2.1 Use Case Model (UCM)

This model provides the information about the domain requirements highlighting

the necessary functional aspects. Use cases describe externally visible behaviors of a

system. This model describes the common and variable requirements for a product line in

a domain. The UGDP is a use case driven process. The use case model is an essential

artifact in this process. Table 4.7 shows an example of the UCM for the banking domain

developed in Chapter 5. The UCM consists of two parts. The first part is the description

of the commonalities and variations of the use cases for a DCS family. The second part

provides the constraints between use cases.

4.3.2.2 QoS Requirement Model (QRM)

This model provides the information about the domain requirements highlighting

the non-functional aspects, namely, the QoS aspects, which is an inherent characteristic

of UniFrame. It is important to identify and model the domain QoS requirement in order

to build QoS-aware DCS. The QRM can be viewed as the QoS aspect at the system level

that can be used to express system QoS requirements. For example, in Table 4.8, the

QRM states that the QoS aspect of the bank DCS family is described by system

throughput and system end to end delay, which are derived from critical use case models.

More detail about this model can be found in Section 5.2.2.3.

Table 4.8 An Example of the QRM

QoS Requirement Model of the Banking Domain Example

System.QoS: all (System.QoS.throughput, System.QoS.endToEndDelay)
System.QoS.throughput: CriticalUseCaseModel.QoS.thoughput
SystemQoS.endToEndDelay: CriticalUseCaseModel.QoS.endToEndDelay

4.3.2.3 Architecture Model in Hierarchical Form (AMHF)

This model provides the information about the domain requirements highlighting

the architectural aspects of a DCS family. It reflects the commonality and variation in the

56

architecture of a DCS family. The hierarchical form is a layered design, which is

described in detail in Section 5.3.1. Table 4.9 shows the example of the AMHF from a

banking domain developed in Chapter 5. The AMHF consists of two parts. The first part

is the description of the commonalities and variations of the architecture for a DCS

family. The second part provides the constraints between architecture properties.

Table 4.9 An Example of the AMHF

Architecture Model in Hierarchical Form of the Banking Domain Example

1. Commonality and Variation
Bank: all (UserSubsystem, UserValidationSubsystem, TransactionSubsystem)
UserSubsystem: all (ATM?, CashierTerminal)
UserValidationSubsystem: all (CustomerValidationServer?, CashierValidationServer)
TransactionSubsystem: all (TransactionServerManager, one-of

(EconomicTransactionSubsystem, DeluxeTransactionSubsystem))
EconomicTransactionSubsystem: EconomicTransactionServer
DeluxeTransactionSubsystem: all (DeluxeTransactionServer, AccountDatabase)

2. Constraint Expression

2.1 Default Constraint
default (UserSubsystem: CashierTerminal)
default (UserValidationSubsystem: CashierValidationServer)
default (TransactionSubsystem: all (TransactionServerManager,

EconomicTransactionSubsystem)
2.2 Satisfaction Constraint

mutual_require (ATM, CustomerValiationServer)

Table 4.10 An Example of the System-Level MM

System-Level Multiplicity Model of the
Banking Domain Example

multiplicity ((Bank, CashierTerminal): 1..*)
multiplicity ((Bank, ATM) : 0..*)
multiplicity ((Bank, CashierValidationServer) : 1)
multiplicity ((Bank, CustomerValidationServer) : 0..1)
multiplicity ((Bank, TransactionServerManager) : 1)
multiplicity ((Bank, EconomicTransactionServer) : 0..2)
multiplicity ((Bank, DeluxeTransactionServer) : 0..2)
multiplicity ((Bank, AccountDatabase) : 0..2)

57

4.3.2.4 System-Level Multiplicity Model (MM)

The multiplicity model defines the multiplicity constraints in a system. The

multiplicity constraints are defined at two levels: system-level multiplicity and

component-level multiplicity. The system-level multiplicity expresses the multiplicity of

the root feature (a system) in terms of leaves (abstract components) in a feature diagram

of AMHF. The component-level multiplicity is a solution space topic and is discussed in

the Section 4.3.3.1.5.

4.3.3 Solution Space in the UGDM

This section presents various models including the configuration knowledge to

provide solutions for a DCS family. These models are organized into three categories:

architecture related models, design feature related models and QoS related models. Some

configuration knowledge is reflected in models, such as the Architecture Model in

Disjunctive Normal Form (AMDNF) reflects the configuration knowledge of illegal

component combinations when it is transformed from Architecture Model in Normalized

Form (AMNF) by the expansion rules. More details are presented in Chapter 5.

4.3.3.1 Architecture-Related Models

The UGDM provides a common architecture with variations for a DCS family.

The commonalities and variations in the architecture are reflected in different architecture

related models, such as Architecture Model in Disjunctive Normal Form (AMDNF) at

both abstract component level and function/interface level, Architecture Model Mapping

(AMM), Abstract Component Interaction Model (ACIM) and component-level

Multiplicity Model (MM). These models also reflect the architecture at different level of

details.

58

4.3.3.1.1 Architecture Model in Disjunctive Normal Form (Abstract Component Level)

The Architecture Model in Disjunctive Normal Form (AMDNF) at the abstract

component level shows what kind of abstract components are needed for an architecture

instance at the component level without concerning about the lower level of detail like

communication patterns. This model is derived from the AMHF by normalization and

expansion as discussed in Section 4.2.3. Table 4.11 provides an example of the AMDNF

at the abstract component level from the banking domain.

Table 4.11 An Example of the AMDNF at the Abstract Component Level

AMDNF at Abstract Component Level for the Banking Domain Example

1. Disjunctive Normal Form

Bank: one-of (BankCase1, BankCase2, BankCase3, BankCase4)

BankCase1: all (ATM, CashierTerminal, CustomerValidationServer,

CashierValidationServer, TransactionServerManager, EconomicTransactionServer)
BankCase2: all (ATM, CashierTerminal, CustomerValidationServer,

CashierValidationServer, TransactionServerManager, DeluxeTransactionServer,
AccountDatabase)

BankCase3: all (CashierTerminal, CashierValidationServer, TransactionServerManager,
EconomicTransactionServer)

BankCase4: all (CashierTerminal, CashierValidationServer, TransactionServerManager,
DeluxeTransactionServer, AccountDatabase)

2. Constraint Expression

2.1 Default Constraint
Default (Bank: BankCase3)

4.3.3.1.2 Architecture Model in Disjunctive Normal Form (Function/Interface Level)

The Architecture Model in Disjunctive Normal Form (AMDNF) at the

function/interface level provides all possible architecture instances for a DCS family. It

also provides more detail information such as the necessary communication patterns in an

architecture instance. Table 4.12 provides an example of the AMDNF at the

function/interface level from the banking domain.

59

Table 4.12 An Example of the AMDNF at the Function/Interface Level

AMDNF at Function/Interface Level for the Banking Domain Example

1. Disjunctive Normal Form
Bank: one-of (BankCase1, BankCase2, BankCase3, BankCase4)
BankCase1: one-of (BankCase1_1)
BankCase2: one-of (BankCase2_1, BankCase2_2)
BankCase3: one-of (BankCase3_1)
BankCase4: one-of (BankCase4_1, BankCase4_2)
BankCase1_1: all (ATMCase1, CashierTerminalCase1, CustomerValidationServerCase1,

CashierValidationServerCase1, TransactionServerManagerCase1,
EconomicTransactionServerCase1)

BankCase2_1: all (ATMCase1, CashierTerminalCase1, CustomerValidationServerCase1,
CashierValidationServerCase1, TransactionServerManagerCase1,
DeluxeTransactionServerCase1, AccountDatabaseCase1)

BankCase2_2: all (ATMCase1, CashierTerminalCase1, CustomerValidationServerCase1,
CashierValidationServerCase1, TransactionServerManagerCase1,
DeluxeTransactionServerCase2, AccountDatabaseCase2)

BankCase3_1: all (CashierTerminalCase1, CashierValidationServerCase1,
TransactionServerManagerCase1, EconomicTransactionServerCase1)

BankCase4_1: all (CashierTerminalCase1, CashierValidationServerCase1,
TransactionServerManagerCase1, DeluxeTransactionServerCase1,
AccountDatabaseCase1)

BankCase4_2: all (CashierTerminalCase1, CashierValidationServerCase1,
TransactionServerManagerCase1, DeluxeTransactionServerCase2,
AccountDatabaseCase2)

2. Constraint Expression
2.1 Default Constraint

default (BankCase2: BankCase2_1)
default (BankCase4: BankCase4_1)

4.3.3.1.3 Architecture Model Mapping (AMM)

This mapping provides the transformation for an AMDNF form from the abstract

component level to the function/interface level. The transformation uses the default

constraint information provided by the AMDNF at the function/interface level. Table

4.13 shows an example of the AMM from the banking domain.

Table 4.13 An Example of AMM

AMM for the Banking Domain Example

map (BankCase1: BankCase1_1)
map (BankCase2: BankCase2_1)
map (BankCase3: BankCase3_1)
map (BankCase4: BankCase4_1)

60

4.3.3.1.4 Abstract Component Interaction Model (ACIM)

This model describes how the abstract components interact with each other. It

provides information about the initiator and responder for each component interaction.

This model provides important configuration knowledge. The system generation

framework depends on this knowledge to configure a concrete instance of a DCS domain.

How the system generation framework uses this knowledge is described in Chapter 6.

Table 4.14 shows an example of ACIM from the banking domain.

Table 4.14 An Example of ACIM

ACIM for the Banking Domain Example

interact (CashierTerminal, CashierValidationServer)
interact (ATM, CustomerValiationServer)
interact (CashierTerminal, TransactionServerManager)
interact (CashierTerminal, EconomicTransactionServer)
interact (CashierTerminal, DeluxeTransactionServer)
interact (ATM, TransactionServerManager)
interact (ATM, EconomicTransactionServer)
interact (ATM, DeluxeTransactionServer)
interact (DeluxeTransactionServer, AccountDatabase)

4.3.3.1.5 Component-Level Multiplicity Model (MM)

The multiplicity model defines the multiplicity constraints in a system. The

multiplicity constraints are defined at two levels: system-level multiplicity model and

component-level multiplicity model. The system-level MM is discussed in Section

4.3.2.4. The component-level multiplicity expresses the multiplicity of each pair of

interaction components. This is one of the configuration knowledge used to assemble a

system by the system generation framework. How the system generation framework uses

this knowledge is described in Chapter 6. Table 4.15 shows an example of component-

level MM from the banking domain.

61

Table 4.15 An Example of Component-level MM

Component-level Multiplicity Model for the Banking Domain Example

multiplicity ((CashierValidationServer, CashierTerminal) : 1..*)
multiplicity ((CustomerValiationServer, ATM) : 1..*)
multiplicity ((TransactionServerManager, CashierTerminal) : 1..*)
multiplicity ((EconomicTransactionServer, CashierTerminal) : 1..*)
multiplicity ((DeluxeTransactionServer, CashierTerminal) : 1..*)
multiplicity ((TransactionServerManager, ATM) : 1..*)
multiplicity ((EconomicTransactionServer, ATM) : 1..*)
multiplicity ((DeluxeTransactionServer, ATM) : 1..*)
multiplicity ((DeluxeTransactionServer, AccountDatabase) : 1)

4.3.3.2 Design-Feature-Related Models

Design feature related models describe functional aspects of the design features

that form the architecture for a DCS family. These models include Interface Model (IM),

Abstract Component Interface Model (ACIM) and Abstract Component Model (ACM).

4.3.3.2.1 Interface Model (IM)

An IM includes all the interfaces designed for a DCS family. An abstract

component must implement one or more of these interfaces. An abstract component can

also require one or more of these interfaces from its post-processing collaborator(s) in

order to accomplish its task. Table 4.16 shows an excerpt of IAccountDatabase designed

for the banking domain example. Complete examples can be found in both Chapter 5 and

Appendix E. The collection of all the interfaces for the domain forms the IM.

4.3.3.2.2 Abstract Component Interface Model (ACIM)

An ACIM shows the required and provided interfaces of all the abstract

components in a DCS family. That is, it defines the functional aspect of the abstract

components. Table 4.17 shows an excerpt of ACIM from the banking domain. The

complete example can be found in Section 5.3.5 or Appendix J.

62

Table 4.16 An Example of an Interface

An Interface Designed for the Banking Domain Example

Interface: IAccountDatabase
1. Syntax
Account getAccount(String accountNumber, int accountType);

Pre: NONE
Post: NONE
Invariant: NONE
Communication Pattern: cp2s or cp2a
Description: This function returns an account object as identified by the parameters. It

returns null if the account specified does not exist.
…
2. Variation

IAccountDatabase: one-of (IAccountDatabaseCase1, IAccountDatabaseCase2)
IAccountDatabaseCase1: { cp2s}
IAccountDatabaseCase2: { cp2a}

3. Default
default (IAccountDatabase: IAccountDatabaseCase1)

Table 4.17 An Example of ACIM

Abstract Component Interface Model for the Banking Domain Example

1. Disjunctive Normal Form

DeluxeTransactionServer: one-of (DeluxeTransaxtionServerCase1,
DeluxeTransactionServerCase2)

AccountDatabase: one-of (AccountDatabaseCase1, AccountDatabaseCase2)
EconomicTransactionServer: EconomicTransactionServerCase1
TransactionServerManager: TransactionServerManagerCase1
CashierTerminal: CashierTerminalCase1
ATM: ATMCase1
CashierValidationServer: CashierValidationServerCase1
CustomerValidationServer: CustomerValidationServerCase1

interface (DeluxeTransaxtionServerCase1: provided_interface (IAccountManagementCase1,

ICustomerManagementCase1), required_interface (IAccountDatabaseCase1))
interface (DeluxeTransactionServerCase2: provided_interface (IAccountManagementCase1,

ICustomerManagementCase1), required_interface (IAccountDatabaseCase2))
…(continuing interface description for the rest of the abstract component listed above)

2. Constraint Expression

2.1 Default Constraint
default (DeluxeTransactionServer : DeluxeTransactionServerCase1)
default (AccountDatabase : AccountDatabaseCase1)

2.2 Satisfaction Constraint
mutual_require (DeluxeTransactionServerCase1, AccountDatabaseCase1)
mutual_require (DeluxeTransactionServerCase2, AccountDatabaseCase2)

63

4.3.3.2.3 Abstract Component Model (ACM)

This model consists of the UMM descriptions for all the abstract components in

the domain. The detail of the UMM description including its format is discussed in

Chapter 3. Examples from the banking domain can be found in Appendix F.

4.4.3.3 QoS-Related Models

The QoS related Models are the solutions in the USGPF to validate the system

QoS for an assembled DCS. These models include Critical Use Case Model at

function/interface level, Architecture Model in Disjunctive Normal Form and Critical

Use Case Model Mapping at function/interface level, and QoS Composition and

Decomposition Model. All these models help to achieve static system QoS validation by

QoS composition and decomposition. Another QoS related model is the Event Grammar

Model for system behavior modeling, which is for dynamic system QoS validation and is

an ongoing effort.

4.4.3.3.1 Critical Use Case Model (Function/Interface Level)

In the UGDM, the critical use cases are those that are important from the angel of

the system performance. Typically, the critical use cases are only a subset of the total use

cases of a system. Rarely, they can be the same. Each use case consists of a set of

scenarios that describe the sequence of actions required to execute the use case. Not all of

the scenarios belonging to a critical use case will be important from the QoS perspective.

In the critical use case model, only the most important scenario of a critical use case is

considered. The Critical Use Case Model (CUCM) at the function/interface level is one

of the important factors used while creating the QoS Composition and Decomposition

Model (QCDM), which is discussed in Section 4.4.3.3.3. Table 4.18 shows an example of

the CUCM from the banking domain.

64

Table 4.18 An Example of CUCM

Critical Use Case Model of the Banking Domain Example

1. Disjunctive Normal Form
CriticalUseCaseModel: one-of (CriticalUseCaseModel1, CriticalUseCaseModel2,

CriticalUseCaseModel3)

CriticalUseCaseModel1: all (DepositMoneyCase1_1, WithdrawMoneyCase1_1,

TransferMoneyCase1_1)
CriticalUseCaseModel2: all (DepositMoneyCase1_2, WithdrawMoneyCase1_2,

TransferMoneyCase1_2)
CriticalUseCaseModel3: all (DepositMoneyCase2, WithdrawMoneyCase2,

TransferMoneyCase2)

DepositMoneyCase1_1: path_f(CashierTerminal.deposit[cp2s],

DeluxeTransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

DepositMoneyCase1_2: path_f (CashierTerminal.deposit[cp2s],
DeluxeTransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

…(continuing critical use case description for the rest of the critical use cases appear
above)

2. Constraint Expression

2.1 Default Constraint
default (CriticalUseCase: CriticalUseCase3)

Table 4.19 An Example of AMDNF and CUCM
Mapping (Function/Interface Level)

AMDNF and CUCM Mapping (Function/Interface Level)

for the Banking Domain Example

map (BankCase1_1: CriticalUseCaseModel3)
map (BankCase2_1: CriticalUseCaseModel1)
map (BankCase2_2: CriticalUseCaseModel2)
map (BankCase3_1: CriticalUseCaseModel3)
map (BankCase4_1: CriticalUseCaseModel1)
map (BankCase4_2: CriticalUseCaseModel2)

4.4.3.3.2 Architecture Model in Disjunctive Normal Form and Critical Use Case Model
Mapping (Function/Interface Level)

The mapping from the AMDNF to the CUCM at the function/interface level in a

DCS family provides the solution to relate the system architecture to the static system

QoS validation mechanism which is based on the CUCM. How to achieve this mapping

65

and how to derive QoS composition and decomposition based on the CUCM are

discussed in Chapter 5. Table 4.19 is an example of this mapping from the banking

domain.

Table 4.20 An Example of QCDM

QoS Composition and Decomposition Model of the Banking Domain Example

QCDM: one-of(CriticalUseCaseModel1, CriticalUseCaseModel2, CriticalUseCaseModel3)
� CriticalUseCaseModel1

1) QoS Composition Model
1.1) QoS Composition Rules for throughput
System.QoS.throughput = CriticalUseCaseModel1.QoS.throughput
CriticalUseCaseModel1.QoS.throughput = min (DepositMoneyCase1_1.QoS.throughput,

WithdrawMoneyCase1_1.QoS.throughput, TransferMoneyCase1_1.QoS.throughput)

1/DepositMoneyCase1_1.QoS.throughput = 1/CashierTerminal.deposit.QoS.throughput +

1/DeluxeTransactionServer.deposit.QoS.throughput +
1/AccountDatabase.getAccount.QoS.throughput +
1/AccountDatabase.saveAccount.QoS.throughput

…(continuing description of rules for throughput for the rest of the use cases shown above
1.2) QoS Composition Rules for endToEndDelay

 …
2) QoS Decomposition Model
2.1) QoS Decomposition Rules for throughput

CashierTerminal.deposit. QoS.throughput > System.QoS.throughput
CashierTerminal.withdraw.QoS.throughput > System.QoS.throughput
CashierTerminal.transfer.QoS.throughput > System.QoS.throughput
DeluxeTransactionServer.deposit. QoS.throughput > System.QoS.throughput
DeluxeTransactionServer.withdraw.QoS.throughput > System.QoS.throughput
DeluxeTransactionServer.transfer.QoS.throughput > System.QoS.throughput
AccountDatabase.getAccount. QoS.throughput > System.QoS.throughput
AccountDatabase.saveAccount.QoS.throughput > System.QoS.throughput

2.2) QoS Decomposition Rules for endToEndDelay
…

� CriticalUseCaseModel2
…

� CriticalUseCaseModel3
…

4.4.3.3.3 QoS Composition and Decomposition Model (QCDM)

This model describes the QoS composition and decomposition rules for each

required QoS parameter for each critical use case. These rules form the QoS Composition

and Decomposition Model (QCDM). The QCDM for each critical use case consists of

66

two models: QoS Composition Model and QoS Decomposition Model. The statements in

the QoS Composition Model are arranged in a “hierarchical form”, i.e., the first statement

expresses the formula for calculating the value for a QoS parameter. The rest of the

statements express how to calculate the values of variables in the right hand side of the

first statement. The QoS Decomposition Model consists of statements for deriving QoS

parameters for each function call for a component involved in the critical use cases. The

format of this section is a listing of QCDM for each critical use case in the Critical Use

Case Model. Table 4.20 is an excerpt of QCDM from the banking domain which also

shows the template for documenting this model. The complete example can be found in

Appendix G and the description can be found in Section 5.3.10.

This chapter describes the contents of the UGDM and the UDSL for modeling and

describing a UGDM in the USGPF. The UGDM is important for representing a DCS

family, including the QoS aspect. As the UGDM becomes more comprehensive, more

models may be included, for example, Event Grammar Model [AUG95, AUG97] for

describing the system behavior. Next chapter presents the UniFrame UGDM

Development Process (UGDP) which is a process for creating such a UGDM for a

distributed computing domain.

67

5 The UNIFRAME UGDM DEVELOPMENT PROCESS (UGDP)

Chapter 4 gives the detailed description on the UGDM. This chapter provides the

UniFrame UGDM Development Process (UGDP), which is for creating the UGDM for a

selected domain. The UGDP is the second part of the UniFrame System-Level

Generative Programming Framework (USGPF). The UGDP covers the generative

domain engineering of the UA. It is a use-case-driven, architecture-centric and iterative

process. Of critical importance is that the UGDP must be domain-independent;

repeatability across multiple domains is an essential requirement. A banking domain

example is completely developed throughout this chapter to demonstrate the UGDP and

is also used to test validity of the proposed USGPF.

5.1 Overview of the UGDP

The outline of the UGDP is shown in Table 5.1. The UGDP consists of three

phases: Domain Analysis, Domain Design and Ordering DSL Design. The Domain

Analysis phase involves Domain Definition and Domain Modeling. This phase is similar

to the Domain Analysis in DEMRAL. The purpose of Domain Definition is to establish

the domain scope based on the analysis of stakeholders, their goals and existing systems.

The purpose of Domain Modeling is to model the contents of the domain by finding the

relevant domain concepts and modeling their features. In Domain Modeling, both the

functional and QoS requirements are identified. In the Domain Design phase the common

layered architecture for a DCS family is developed as well as various QoS related

models. In the phase of Ordering DSL Design, ordering schemes are designed so that

application engineers or system assemblers can order a DCS by supply system

68

requirements. This ordering language can be textual, tabular, or graphic. It can also be

supported by natural language processing.

Table 5.1 Outline of the UGDP

The UniFrame UGDM Development Process (UGDP)

1. Domain Analysis

1.1 Domain Definition
1.1.1 Domain Description
1.1.2 Domain Scoping and Context Analysis

1.2 Domain Modeling
1.2.1 Modeling Domain Functional Requirements
1.2.2 Identifying and Modeling Domain Key Concepts
1.2.3 Identifying and Modeling Domain QoS Requirements

2. Domain Design
2.1 Designing Layered Architecture
2.2 Creating Component Diagrams
2.3 Creating Sequence Diagrams
2.4 Refining Critical Use Case Model to Abstract Component Level
2.5 Identifying Component Interfaces and Communication Patterns
2.6 Refining Critical Use Case Model to Function/Interface Level
2.7 Refining Architecture Model in Disjunctive Normal Form from Component Level to

Function/Interface Level
2.8 Mapping Architecture Model in Disjunctive Normal Form to Critical Use Case Model

(Function/Interface Level)
2.9 Creating Abstract Component Model
2.10 Creating QoS Composition and Decomposition Model

3. Ordering Language Design

The details of the process are described in next sections. Each step in the process

is further illustrated through a banking domain example. The outcome of this example is

the UGDM presented Appendix I.

5.2 Domain Analysis

Domain in the UniFrame Approach refers to industry specific markets such as

Financial Services, Health Care Services and Manufacturing Services. Domain analysis

involves two main activities: Domain Definition and Domain Modeling. The purpose of

Domain Definition is to establish the domain scope based on the analysis of stakeholders,

69

their goals, and existing systems. The purpose of Domain Modeling is to model the

contents of the domain by finding the relevant domain concepts and modeling their

features. At the beginning of Domain Analysis, establish a domain dictionary and a

register of domain knowledge sources. Domain dictionary includes definitions of domain

features and concepts. Domain knowledge sources are references to the literature,

manuals, and domain experts consulted during domain analysis. This information is

updated as the process going on.

5.2.1 Domain Definition

Domain Definition involves Domain Description, and Domain Scoping and

Context Analysis. The first activity of Domain Definition is to identify stakeholders and

their goals. The next activity is to determine the scope and characterize the contents of

the domain.

5.2.1.1 Domain Description

This step follows Varghese’s work on the problem space of a variable domain

[VAR02]. The goal of this step is to obtain an initial understanding of the domain which

is going to be modeled. This is important because it gives everyone involved an initial

understanding of what is going to be accomplished. This should begin with the

development of a problem statement. Although this may not be very detailed and well

defined at the beginning, it is important to document the overall goal at the beginning of

the domain engineering process. The next item to be produced is a general description of

the capabilities that applications falling within this domain should possess. This should

include any desired properties of the system family that have not yet been captured in the

problem statement. The final item to be produced is a list of any existing applications that

would fall under the description of this domain.

70

Table 5.2 Domain Description for the Banking Domain Example

Domain Description

1. Problem Description
To create a banking system that is able to manage account activities.

2. Description of General Capabilities
The system should be able to process the basic account functions: create an account, delete an
account, query account balance, deposit money and withdraw money. The system may contain
different security features, including client security and server security. The system must meet the
QoS requirements. The domain includes interfaces for bank staff to manage accounts and may also
include interfaces (i.e. ATM) for customers to manage their accounts.

3. Domain Boundaries
This is a simple banking domain (version 1.0) to provide the basic personal account management.
Corporate account management is not considered. Advanced banking features, for example, loan
processing and credit card, are not supported.

4. Potential Sources of Information

1. Banking Staff – They have knowledge regarding required features and rules.
2. Application Engineers – May have applicable knowledge from past developments of

related applications. May also have knowledge regarding system requirements at various
sites.

3. Literature – May have formal definitions of key terms, example models, etc.

5. Potential Stakeholders and Experts

1. Senior Management
2. Project Leaders
3. Application Engineers
4. Bank Staffs

6. Related Domain

1. Loan Domain

The stakeholder analysis is a dynamic, social process, which may involve not only

identifying the key players for a domain, but also getting some important people or

organizations to be involved. These people may have oversight responsibilities or they

may be a resource for better understanding of the domain. For the banking domain

example, four groups of people were recognized as important stakeholders. Senior

management and project leadership were included to ensure that they remain aware of

ongoing progress. Application engineers are important as a source of information about

any previous projects that may be related to the current project. They will also be the key

people later developing the software solution. Bank staffs are the end users of this

71

system. The study of the resources and meeting with the stakeholders will expand the

domain description, including defining the domain boundaries. The domain boundaries

state clearly what the application is going to be. A list of potential sources of information

is also identified. Any relationships to other domains that can be identified also need to

be documented. This is also a source for gaining insight into the current domain. The

banking domain has a lot of similarities to the loan domain. For example, in the banking

domain, customers have their accounts, they save money and get interest from a bank; in

the loan domain, customers also have their accounts; however, they borrow money, and

they pay loans and interests. The studying of the loan domain can provide useful input to

the banking domain. Table 5.2 shows the artifact of domain description for the banking

domain example.

5.2.1.2 Domain Scoping and Context Analysis

This is to determine the scope and characterize the contents of the domain by

defining its domain features. The domain features are obtained by analyzing the

application areas and markets of the systems in the domain and by analyzing the existing

systems.

By analyzing the domain description we derived, studying exemplar systems,

consulting domain experts, a use case model (UCM) is developed to formally define the

domain functionalities. Figure 5.1 demonstrates the use case model of the banking

domain example. Direct users of the system include cashiers and customers. An account

can only be accessed by one user at a time. Table 5.3 shows the description of the use

case model for the banking domain example. Table 5.4 shows an example of a domain

dictionary for the banking domain example. The table is a partial listing. The description

of the use case model is also a part of the domain dictionary.

Use cases are most often described from an end-user point of view. For example,

with an automated teller machine (ATM), we might investigate use cases for the

customers such as DepositMoney, WithdrawMoney, TransferMoney, and CheckBalance,

etc.

72

Table 5.3 Description of the UCM for the Banking Domain Example

Description of Use Case Model

ManageAccounts: Common account activities, including depositing money, withdrawing money,

transferring money, and checking balance. Both cashiers and customers have activities of
ManageAccounts.

DepositMoney: An activity of ManageAccounts. Depositing certain amount of money into an account.
WithdrawMoney: An activity of ManageAccounts. Withdrawing certain amount of money from an

account.
TransferMoney: An activity of ManageAccounts. Transferring certain amount of money from one

account to another.
CheckBalance: An activity of ManageAccounts. Checking the balance of an account.
ManageCustomers: Activities of opening an account or closing an account for a customer.

ManageCustomers is intended for cashiers only.
OpenAccount: An activity of ManageCustomers. Opening an account for a customer.
CloseAccount: An activity of ManageCustomers. Closing an account for a customer.
Login-exitAccount: An activity used by activities of ManageAccounts. The login process checks

whether the specified account exists, if it exists, locks the account so that other activities can
not access the account in order to ensure data integrity. The exit process unlocks an account so
that other activities can use the account.

ValidateUsers: Validating cashiers and customers before they can use a bank system. It is a password
checking process. The user name for a cashier is his/her user id. The user name for a customer
is his/her account number.

ValidateUsers

<<extend>> <<extend>>

CloseAccount

Login-exitAccount
OpenAccount

ManageAccounts

DepositMoney WithdrawMoney
CheckBalance

Cashier
Customer

ManageCustomers

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Figure 5.1 UCM for the Banking Domain Example

<<include>>

TransferMoney

73

Table 5.4 Domain Dictionary for the Banking Domain Example

Domain Dictionary
(partial listing)

Banking: domain for managing personal accounts.
Bank: An entity keeping accounts.
Cashier: Persons who manage personal accounts on behalf of customers.
Customer: Persons who owns accounts.
User: Cashier and Customer.
Account: An entity keeping the money belongs to a customer
…

5.2.2 Domain Modeling

Domain Modeling involves three activities: modeling the domain functional

requirements, identifying and modeling the domain key concepts, and identifying and

modeling the domain QoS requirements.

5.2.2.1 Modeling Domain Functional Requirements

The use case model (UCM) established above represents the functional

requirements of a domain. However, the use case diagram cannot express the common

and variable functional properties which are the inherent characteristics of a DCS family.

For example, in the banking domain example, both cashiers and customers manage

accounts; however, a system might not provide this functionality for customers. The

variability can be easily modeled in a feature diagram. A feature diagram is a concise and

convenient way of defining a domain. It is used throughout the UGDP to document the

common and variable properties of different artifacts. The feature diagram shown in

Figure 5.2 captures the common and variable properties of the functional requirements

for the banking domain example, which is also expressed in the UDSL as shown in Table

5.5 with all the constraints that can not be expressed by the feature diagram.

74

Table 5.5 UCM in the UDSL for the Banking Domain Example

Use Case Model

1. Commonality and Variation

Bank: all (ManageCustomers, ManageAccounts, Login-exitAccount, ValidateUsers)
ManageCustomers: all (OpenAccount, CloseAccount)
ManageAccounts: all (ManageAccounts_Cashier, ManageAccounts_Customer?)
ManageAccounts_Cashier: all (WithdrawMoney_Cashier, DepositMoney_Cashier,

TransferMoney_Cashier, CheckBalance_Cashier)
ManageAccounts_Customer: all (WithdrawMoney_Customer, DepositMoney_Customer,

TransferMoney_Customer, CheckBalance_Customer)
ValidateUsers: all (ValidateUsers_Cashier, ValidateUsers_Customer?)
Login-exitAccount: all (Login-exitAccount_Cashier, Login-exitAccount_Customer?)

2. Constraint Expression
2.1 Default Constraint

default (ManageAccounts : ManageAccounts_Cashier)
default (ValidateUsers : ValidateUsers_Cashier)
default (Login-exitAccount : Login-exitAccount_Cashier)

2.2 Satisfaction Constraint
mutual_require (ValidateUsers_Customer, ManageAccounts_Customer, Login-

exitAccount_Customer)

UseCaseModel

OpenAccount

ManageCustomers

CloseAccount

Figure 5.2 Feature Diagram of the UCM for the Banking Domain

CheckBalance
_Cashier

WithdrawMoney
_Cashier

DepositMoney
_Cashier

TransferMoney
_Cashier

ManageAccounts

ManageAccounts_Customer ManageAccounts_Cashier

CheckBalance
_Customer

WithdrawMoney
_Customer

DepositMoney
_Customer

TransferMoney
_Customer

Login-exitAccount

Login-exitAccount
_Cashier

Login-exitAccount
_Customer

ValidateUsers

ValidateUsers
_Cashier

ValidateUsers
_Customer

75

5.2.2.2 Identifying and Modeling Domain Key Concepts

Source of key concepts and features includes existing and potential stakeholders,

domain experts and domain literature, existing systems, preexisting models (e.g., use case

models, object models), etc. Strategies for identifying features include both top-down

approaches and bottom up approaches. In the banking domain example, Account is

identified as a key concept. An Account has many common features, including Account

Number, Customer Name, Balance and Account Type. It may also have an Interest Rate,

depending on what type of Account it is. Figure 5.3 and Table 5.6 show the modeling of

the concept of Account that is used in the banking domain example.

Table 5.6 Key Concepts in the UDSL for the Banking Domain Example

Key Concepts in the UDSL

1. Commonality and Variation

Account: all (AccountType, InterestRate?, AccountNubmer, CustomerName, Balance)
AccountType: one-of (SavingAccount, CheckingAccount)

2. Constraint Expression

2.1 Satisfaction Constraint
require (SavingAccount, InterestRate)
reject (CheckingAccount, InterestRate)

Account

SavingAccount

AccountType InterestRate

CheckingAccount

AccountNumber Balance CustomerName

Figure 5.3 Feature Diagram of Key Concepts for the Banking Domain Example

76

5.2.2.3 Identifying and Modeling Domain QoS Requirements

QoS is an inherent characteristic of the UniFrame. It is important to identify and

model the domain QoS requirements in order to build QoS-aware DCS. There are two

steps to do so. Firstly, consult the QoS catalog and domain experts to identify the key

QoS parameters for evaluating or monitoring the system. Secondly, identify the critical

use cases in the system. The critical use cases are a subset of the use cases identified for a

domain. The evaluation and monitor of the QoS parameters on these critical use cases can

represent the QoS parameters of the system. The use of critical use case in QoS

evaluation and monitoring can make the process simpler and more effective. The

outcome of this step is two models: the QoS requirement model (QRM) and the critical

use case model (CUCM).

Suppose the analysis of the QoS criteria reveals that throughput and

endToEndDelay are the two critical QoS features that are needed in banking systems and

CriticalUseCaseModel

WithdrawMoney
_Cashier

DepositMoney
_Cashier

Figure 5.5 CUCM for the Banking Domain Example

TransferMoney
_Cashier

SystemQoS

System_endToEndDelay System_throughput

Figure 5.4 QRM for the Banking Domain Example

77

are the two standard measurements for the system performance. Suppose DepositMoney,

WithdrawMoney and TransferMoney of cashiers are the critical use cases of bank

systems. There are four ways to represent the system QoS from the critical use case QoS:

minimal QoS of the critical use cases, maximal QoS of the critical use cases, a

customized expression (one special case is taking the average), or providing QoS of all

the critical use cases. For the first three ways, each system QoS parameter is expressed as

one value. For the last one, each system QoS parameter is expressed as a set of values on

different critical use cases. In the banking domain example, the minimal QoS value is

adopted for throughput, and the maximal QoS value is adopted for endToEndDelay.

Figure 5.4 and Figure 5.5 show the QoS requirement model and the critical use case

model for the banking domain example respectively. Table 5.7 and Table 5.8 show these

models in the UDSL respectively.

Table 5.7 QRM in the UDSL for the Banking Domain Example

QoS Requirement Model (QRM) in the UDSL

SystemQoS: all (System_throughput, System_endToEndDelay)

Table 5.8 CUCM in the UDSL for the Banking Domain Example

Critical Use Case Model (CUCM) in the UDSL

CriticalUseCaseModel: all (WithdrawMoney_Cashier, DepositMoney_Cashier,

TransferMoney_Cashier)

5.3 Domain Design

The goal of Domain Design is to develop the layered architecture for a DCS

family as well as various QoS related models. The architectural view of a design model

presents the most architecturally important classifiers of the design model: the most

important subsystems, interfaces, as well as a few very important classes, primarily the

active classes. It also presents how the most important use cases are realized in terms of

78

these classifiers. There are different definitions of software architecture. Following are

the two popular definitions.

Shaw and Garlan [SHA96] define software architecture as follows. Abstractly,

software architecture involves the description of elements from which systems are built,

interactions among those elements, patterns that guide their composition, and constraints

on these patterns. In general, a particular system is defined in terms of a collection of

components and interactions among these components. Such a system may in turn be

used as a (composite) element in a larger system design.

Buschmann et al. [BUS96] offer another definition of software architecture. A

software architecture is a description of the subsystems and components of a software

system and the relationship among them. Subsystems and components are typically

specified in different views to show the relevant functional and nonfunctional properties

of a software system. The software architecture of a system is an artifact. It is the result

of the software development activity.

The architecture developed in the UGDP follows both definitions above. The

architectural design of a system is a high-level design. The goal is to come up with a

flexible structure which supports structural variation in its topology. This kind of

architecture satisfies all important requirements and still leaves a large degree of freedom

for the implementation. As a design rule, use the most stable parts of a DCS family to

form the “skeleton” and make the rest flexible and easy to evolve and maintain. But even

the skeleton has to be modified sometimes, especially when a UGDM has not reached its

maturity.

5.3.1 Designing Common Layered Architecture

The development of a common architecture for a family of systems is a critical

step. This architecture indicates the commonality and variability. Designing the

architecture is an iterative process. It requires analyzing the requirement model and the

design of existing systems and meeting with persons who have built many systems for

different customers in the same problem area. It usually needs prototyping.

79

Buschmann et al. summarized a list of architectural patterns in [BUS96]: layers

pattern, pipes and filters pattern, blackboard pattern, broker pattern, model-view-

controller pattern, and microkernel pattern. The advantage of the layers pattern is the

modularization of a system. When a layer is modified, it has the minimal impact on the

overall system structure. This makes the refinement and maintenance of an architecture

easier and less error prone.

In the UniFrame, a layering pattern is adopted for the system architecture. This

layering is achieved by decomposing tasks into groups of subtasks, in which each group

of subtasks is at a particular level of abstraction.

The process of designing a common layered architecture for a family of systems

involves answering questions such as what kinds of subsystems and/or abstract

components are needed to meet certain functional or nonfunctional requirements, how

these subsystem and/or abstract components are connected, what are the constraints, what

kind of middleware or component model will be used, what interfaces the abstract

components will have, how they will accommodate the requirements, etc. The process

typically begins by looking at a few use cases, creating use case realizations for them,

and identifying the roles for the design features. Then do the same for other use cases. As

the work continues we should be able to identify the design features and design variations

that are needed for designing a common layered architecture.

There are three categories of design features: system, subsystem and abstract

component. The top root of the feature diagram of a layered architecture is a system

design feature, which is denoted by its name surrounded by <>. The leaves of a design

feature diagram are abstract components, which are denoted by their names surrounded

by []. The other nodes in the design feature diagrams are subsystems, which are denoted

by their names surrounded by (). The subsystems are the aggregation of subsystems and/or

abstract components. The abstract components are atomic features and the subsystems

are composite features. The abstract components will be realized in the component

engineering stage.

80

For the banking domain example, suppose the analysis shows the need for a user

subsystem to accept requests from users (cashiers and customers), a transaction

subsystem for carrying out account and customer management, and a user validation

subsystem. The user subsystem passes the requests to the user validation subsystem and

the transaction subsystem. The account and customer management use cases are realized

by the user subsystem and the transaction subsystem. The user validation use case is

realized by the user subsystem and the user validation subsystem. The user validation

subsystem should be able to validate both cashiers and customers of a bank. The design at

this first layer is documented as Architecture Model in Hierarchical Form (AMHM) in

Figure 5.6, Design Feature Interaction Model (DFIM) in Figure 5.7, constraints in Table

5.9 and design feature description in Table 5.10. In the DFIM, the notation “ I” indicates

the design feature that initiates the interaction between the two associated design features.

Bank

UserSubsystem

UserValidation
Subsystem

Transaction
Subsystem

I

I

Figure 5.7 DFIM for the Banking Domain Example (Layer 1)

<Bank>

(UserSubsystem) (UserValiation
Subsystem)

(Transaction
Subsystem)

Figure 5.6 Feature Diagram of AMHF for the Banking
 Domain Example (Layer 1)

81

Table 5.9 Constraints in the UDSL for the
Banking Domain Example (Layer 1)

Constraints in the UDSL

1. Multiplicity Constraint

multiplicity ((Bank, UserSubsystem) : 1)
multiplicity ((Bank, TransactionSubsystem) : 1)
multiplicity ((Bank, UserValidationSubsystem) : 1)

2. Default Constraint

NONE

3. Satisfaction Constraint

NONE

Table 5.10 Design Feature Description
for the Banking Domain Example (Layer 1)

Design Feature Description

1. System

Bank: Provide basic account management and transaction services.

2. SubSystem

UserSubsystem: Interact with users.
UserValidationSubsystem: Validate a user before the user can use

the system.
TransactionSubsystem: Perform transactions.

3. Abstract Component

NONE

In order to meet the possible different levels of the QoS requirements and the

financial affordability of different bank corporations, multiple transaction subsystems are

designed. Suppose an economic transaction subsystem with a single server and a deluxe

transaction subsystem with multiple servers with dedicated functionalities are designed.

For the user subsystem, customer and cashier have different need for using the system. A

customer only needs to manage his/her accounts. A cashier needs not only to manage

customers’ accounts, but also to manage customers. For the user validation subsystem,

separate abstract components are designed to validate cashiers and customers

82

respectively. The outcome of this second layer is shown in Figure 5.8, Figure 5.9, Table

5.11 and Table 5.12.

UserSubsystem

Cashier
Terminal

ATM

TransactionSubsystem

EconomicTransaction
Subsystem

Deluxe
TransactionSubsystem

TransactionServer
Manger

I

I

I
I

I I

UserValidationSubsystem

CashierValidationServer

CustomerValidationServer

UserSubsystem

Cashier
Terminal

ATM

I

I

Figure 5.9 DFIM for the Banking Domain Example (Layer 2)

(UserSubsystem)

[ATM] [Cashier
Terminal]

(UserValiation
Subsystem)

[Customer
ValidationServer]

[Cashier
ValidationServer]

[Transaction
ServerManager]

(Transaction
Subsystem)

(EconomicTransaction
Subsystem)

(DeluxeTransaction
Subsystem)

Figure 5.8 Feature Diagram of AMHF for the
 Banking Domain Example (Layer 2)

83

Table 5.11 Constraints in the UDSL for the Banking Domain Example (Layer 2)

Constraints in the UDSL

1. Multiplicity Constraint

multiplicity ((UserSubsystem, CashierTerminal) : 1..*))
multiplicity ((UserSubsystem, ATM) : 0..*))
multiplicity ((UserValidationSubsystem, CustomerValidationServer): 0..1))
multiplicity ((UserValidationSubsystem, CashierValidationServer) : 1))
multiplicity ((TransactionSubsystem, EconomicTransactionSubsystem) : 1..2))
multiplicity ((TransactionSubsystem, DeluxeTransactionSubsystem) : 1..2))
multiplicity ((TransactionSubsystem, TransactionServerManager) : 1))

2. Default Constraint

default (UserSubsystem : CashierTerminal)
default (UserValidationSubsystem : CashierValidationServer)
default (TransactionSubsystem : all (TransactionServerManager,

EconomicTransactionSubsystem))

3. Satisfaction Constraint

mutual_require (ATM, CustomerValiationServer)

Table 5.12 Design Feature Description for the Banking Domain Example (Layer 2)

Design Feature Description

1. System

NONE

2. SubSystem

EconomicTransactionSubsystem: provide account transaction service with low performance.
DeluxeTransactionSubssytem: provide account transaction service with high performance.

3. Abstract Component

CashierTerminal: interact with cashiers. Provide both account management and account
transaction service.

ATM: interact with customers. Provide only account transaction service.
TransactionServerManager: Keep a list of account numbers and servers on which the

accounts are stored.
CustomerValidationServer: provide customer validation service for ATM.
CashierValidationServer: provide cashier validation service for CashierTerminal.

The third layer of the banking domain example is the design for the economic

transaction subsystem and the deluxe transaction subsystem. The outcome is shown in

Figure 5.10, Figure 5.11, Table 5.13 and Table 5.14. When all the leaves in the layered

architecture are abstract components, the design reaches the bottom.

84

Table 5.13 Constraints in the UDSL for the Banking Example (Layer 3)

Constraints in the UDSL

1. Multiplicity Constraint

multiplicity ((EconomicTransactionSubsystem, EconomicTransactionServer) : 1)
multiplicity ((DeluxeTransactionSubsystem, DeluxeTransactionServer) : 1)
multiplicity ((DeluxeTransactionSubsystem, AccountDatabase) : 1)

2. Default Constraint

NONE

3. Satisfaction Constraint

NONE

UserSubsystem

Cashier
Terminal

ATM

DeluxeTransaction
Subsystem

 Deluxe

Transaction
Server

AccountDatabase

I

I
I

UserSubsystem

Cashier
Terminal

ATM

EconomicTransaction
Subsystem

Economic
Transaction
Server

I

I

Figure 5.11 DFIM for the Banking Domain Example (Layer 3)

[Economic
Transaction
Server]

(EconomicTransaction
Subsystem)

[Account
Database]

[Delux
Transaction
Server]

(DeluxeTransaction
Subsystem)

Figure 5.10 Feature Diagram of AMHF for the
 Banking Domain Example (Layer 3)

85

Table 5.14 Design Feature Description
for the Banking Domain Example (Layer 3)

Design Feature Description

1. System

NONE

2. SubSystem

NONE

3. Abstract Component

EconomicTransactionServer: provide account transaction service with low performance.
DeluxeTransactionServer: provide account transaction service with high performance.
AccountDatabase: provide account storage.

Put all the increments from each layer together to derive the feature diagram of

Architecture Model in Hierarchical Form (AMHF) for the banking domain example as

shown in Figure 5.12, constraint as shown in Table 5.15, Design Feature Interaction

Model (DFIM) in Figure 5.13, and design feature description in Table 5.16. From the

banking domain example, we can see that one concept in the requirement model can be

mapped to one abstract component, or mapped to a set of abstract components that form a

subsystem.

<Bank>

(UserSubsystem)

[ATM] [Cashier
Terminal]

(UserValiation
Subsystem)

[Customer
ValidationServer]

[Cashier
ValidationServer]

[Account
Database] [Economic

Transaction
Server]

[Transaction
ServerManager]

(Transaction
Subsystem)

[Delux
Transaction
Server]

(EconomicTransaction
Subsystem)

(DeluxeTransaction
Subsystem)

Figure 5.12 Feature Diagram of AMHF for the Banking Domain Example

86

Table 5.15 Constraints in the UDSL for the Banking Example

Constraints

1. Multiplicity Constraint

multiplicity ((Bank,UserSubsystem): 1)
multiplicity ((Bank, TransactionSubsystem) : 1)
multiplicity ((Bank, UserValidationSubsystem) : 1)
multiplicity ((UserSubsystem, CashierTerminal) :1..*)
multiplicity ((UserSubsystem, ATM) : 0..*)
multiplicity ((UserValidationSubsystem, CustomerValidationServer): 0..1)
multiplicity ((UserValidationSubsystem, CashierValidationServer) : 1)
multiplicity ((TransactionSubsystem, EconomicTransactionSubsystem) : 1..2)
multiplicity ((TransactionSubsystem, DeluxeTransactionSubsystem) : (1..2)
multiplicity ((T ransactionSubsystem, TransactionServerManager) : 1)
multiplicity ((EconomicTransactionSubsystem, EconomicTransactionServer) : 1)
multiplicity ((DeluxeTransactionSubsystem, DeluxeTransactionServer) : 1)
multiplicity ((DeluxeTransactionSubsystem, AccountDatabase) : 1)

2. Default Constraint

default (UserSubsystem : CashierTerminal)
default (UserValidationSubsystem : CashierValidationServer)
default (TransactionSubsystem : all (TransactionServerManager,

EconomicTransactionSubsystem))

3. Satisfaction Constraint

mutual_require (ATM, CustomerValiationServer)

<Bank>

(UserValidation
Subsystem)

[Cashier
Validation
Server]

[Customer
Validation
Server]

(UserSubsystem)

[Cashier
Terminal]

[ATM]

(TransactionSubSystem)

(EconomicTransactionSubsystem)

[EconomicTransactionServer]

(DeluxeTransactionSubsystem)

[Deluxe
Transaction
Server]

[Account
Database]

[TransactionServerManager]

I

I

I
I
I

I
I

I

I

Figure 5.13 DFIM for the Banking Domain Example

87

Table 5.16 Design Feature Description for the Banking Example

Design Feature Description

1. System

Bank: Provide basic account management and transaction services.

2. SubSystem

UserSubsystem: Interact with users.
UserValidationSubsystem: Validate a user before the user can use the

system.
TransactionSubsystem: Perform transactions.
EcnomicTransactionSubsystem: provide account transaction service with

low performance.
DeluxeTransactionSubssytem: provide account transaction service with

high performance.

3. Abstract Component

CashierTerminal: interact with cashiers. Provide both account
management and account transaction service.

ATM: interact with customers. Provide only account transaction service.
ServerManager: Keep a list of account numbers and servers on which the

accounts are stored.
CustomerValidationServer: provide customer validation service for ATM.
CashierValidationServer: provide cashier validation service for

CashierTerminal.
EconomicTransactionServer: provide account transaction service with low

performance.
DeluxeTransactionServer: provide account transaction service with high

performance.
AccountDatabase: provide account storage for DeluxeTransactionServer.
CustomerValidationServer: provide customer validation service for ATM.
CashierValidationServer: provide cashier validation service for

CashierTerminal.

Table 5.17 AMHF in the UDSL for the Banking Domain Example

Architecture Model in Hierarchical Form

Bank: all (UserSubsystem, UserValidationSubsystem, TransactionSubsystem)
UserSubsystem: all (ATM?, CashierTerminal)
UserValidationSubsystem: all (CustomerValidationServer?,

CashierValidationServer)
TransactionSubsystem: all (TransactionServerManager, one-of

(EconomicTransactionSubsystem, DeluxeTransactionSubsystem))
EconomicTransactionSubsystem: EconomicTransactionServer
DeluxeTransactionSubsystem: all (DeluxeTransactionServer, AccountDatabase)

88

Table 5.18 ACIM in the UDSL for the Banking
Domain Example

Abstract Component Interaction Model

interact (CashierTerminal, CashierValidationServer)
interact (ATM, CustomerValiationServer)
interact (CashierTerminal, TransactionServerManager)
interact (CashierTerminal, EconomicTransactionServer)
interact (CashierTerminal, DeluxeTransactionServer)
interact (ATM, TransactionServerManager)
interact (ATM, EconomicTransactionServer)
interact (ATM, DeluxeTransactionServer)
interact (DeluxeTransactionServer, AccountDatabase)

Table 5.19 MMSL in the UDSL for the
Banking Domain Example

System-Level Multiplicity Model

multiplicity ((Bank, CashierTerminal): 1..*)
multiplicity ((Bank, ATM) : 0..*)
multiplicity ((Bank, CashierValidationServer) : 1)
multiplicity ((Bank, CustomerValidationServer) : 0..1)
multiplicity ((Bank, TransactionServerManager) : 1)
multiplicity ((Bank, EconomicTransactionServer) : 0..2)
multiplicity ((Bank, DeluxeTransactionServer) : 0..2)
multiplicity ((Bank, AccountDatabase) : 0..2)

Table 5.20 MMCL in the UDSL for the Banking Example

Component-level Multiplicity Model

multiplicity ((CashierValidationServer, CashierTerminal) : 1..*)
multiplicity ((CustomerValiationServer, ATM) : 1..*)
multiplicity ((TransactionServerManager, CashierTerminal) : 1..*)
multiplicity ((EconomicTransactionServer, CashierTerminal) : 1..*)
multiplicity ((DeluxeTransactionServer, CashierTerminal) : 1..*)
multiplicity ((TransactionServerManager, ATM) : 1..*)
multiplicity ((EconomicTransactionServer, ATM) : 1..*)
multiplicity ((DeluxeTransactionServer, ATM) : 1..*)
multiplicity ((DeluxeTransactionServer, AccountDatabase) : 1)

89

The feature diagram of the Architecture Model in Hierarchical Form shown in

Figure 5.12 can be expressed in the UDSL as shown in Table 5.17. The abstract

component interaction model (ACIM) can be derived from Figure 5.13. The ACIM

consists of only abstract components. The ACIM in the UDSL for the banking domain

example is shown in Table 5.18.

From the multiplicity constraints and the abstract component interaction model,

derive the System-Level Multiplicity Model (MMSL) and the Component-Level

Multiplicity Model (MMCL). The MMSL expresses the multiplicity of the root feature (a

system) in terms of the leaves (abstract components). The MMCL expresses the

multiplicity of each pair of interaction components. The method for deriving these two

artifacts is a series of substitutions using the multiplicity constraints and the abstract

component interaction model. Table 5.19 and 5.20 show these two artifacts for the

banking domain example.

5.3.2 Creating Component Diagrams

From the AMHL, a normalized architecture model, i.e., Architecture Model in

Normalized Form (AMNF), which consists of only abstract components can be derived.

The AMNF for the banking domain example is shown in Table 5.21. The AMNF can

then be transformed into disjunctive normal form, i.e., architecture model in disjunctive

normal form (AMDNF). The AMDNF for the banking domain example is shown in

Table 5.22. Each disjunctive normal form at the abstract component level represents one

possible architecture instance. When looking at the communication pattern level, each

disjunctive normal form at abstract component level may represent multiple system

instances as revealed later in the process. The satisfaction constraints are used in the

transformation process of architectures. Details of how to do the transformations between

different forms of architecture model is discussed in Section 4.2.3.

For each disjunctive normal form at the abstract component level, there is a

component diagram, which shows a set of components and their relationships.

Component diagrams are used to illustrate the static implementation view of a system

90

architecture. Component diagrams can be derived intuitively from the design feature

interaction model and the component-level multiplicity model. Figure 5.14 shows the

component diagram for BankCase1, one case in the AMNF for the banking domain

example. A complete list of all component diagrams is in Appendix B.

Table 5.21 AMNF in the UDSL for the Banking Domain Example

Architecture Model in Normalized Form

1. Commonality and Variation

Bank: all (all (ATM?, CashierTerminal), all (CustomerValidationServer?,
CashierValidationServer), all (TransactionServerManager, one-of
(EconomicTransactionServer, all (DeluxeTransactionServer, AccountDatabase))))

2. Constraint Expression

2.1 Default Constraint
default (Bank : all (CashierTerminal, CashierValidationServer,

TransactionServerManager, EconomicTransactionSubsystem))
2.2 Satifaction Constraint

mutual_require (ATM, CustomerValidationServer)

Table 5.22 Architecture Model in Disjunctive Normal Form (Abstract
Component Level) in the UDSL for the Bank Example (4 disjunctives)

Architecture Model in Disjunctive Normal Form (Abstract Component Level)

1. Disjunctive Normal Form

Bank: one-of (BankCase1, BankCase2, BankCase3, BankCase4)

BankCase1: all (ATM, CashierTerminal, CustomerValidationServer,
CashierValidationServer, TransactionServerManager,
EconomicTransactionServer)

BankCase2: all (ATM, CashierTerminal, CustomerValidationServer,
CashierValidationServer, TransactionServerManager,
DeluxeTransactionServer, AccountDatabase)

BankCase3: all (CashierTerminal, CashierValidationServer,
TransactionServerManager, EconomicTransactionServer)

BankCase4: all (CashierTerminal, CashierValidationServer,
TransactionServerManager, DeluxeTransactionServer,
AccountDatabase)

2. Constraint Expression

2.1 Default Constraint
default (Bank : BankCase3)

91

5.3.3 Creating Sequence Diagrams

Sequence diagram is good for showing how use cases are carried out by

appropriate components. Create one or more sequence diagrams to show how the

autonomous components in the system interact with each other and with users. At least

one sequence diagram should be created for each use case identified. It is possible there

are variations in realizing a use case and there may be multiple ways to realize a use case

as this is inherent in the development of a DCS family. In such a situation, a separate

sequence diagram should be created for each alternative. During the creation of the

sequence diagrams for each use case, also design the communication patterns of the

function calls between components. A communication pattern shows the characteristic of

parallelism of a function. The basic communication patterns include one-way, two-way-

synchronous and two-way-asynchronous, which are discussed in Chapter 4. The

information about communication patterns is not shown in the sequence diagram, but is

summarized in the function summary of abstract components in Section 5.3.5. Figure

5.15 shows the sequence diagram of the Deposit Money use case for a cashier when

EconomicTransactionServer is involved. A complete list of sequence diagrams is in

Appendix C.

1

1..*

1..*

1

1..*

1..*

1..*

1..*

1

1

1

[Transaction
ServerManager]

[Customer
ValidationServer]

[ATM]

Figure 5.14 Component Diagram of BankCase1 for Banking Domain

[Cashier
ValidationServer] [CashierTerminal]

[Economic
Transaction
Server]

92

Table 5.23 CUCM at the Abstract Component Level in the UDSL
for the Banking Domain Example

Critical Use Case Model at the Abstract Component Level

1. Commonality and Variation

CriticalUseCaseModel: all (DepositMoney_Cashier, WithdrawMoney_Cashier,
TransferMoney_Cashier)

DepositMoney_Cashier: one-of (DepositMoneyCase1, DepositMoneyCase2)
DepositMoneyCase1: path_c (CashierTerminal, DeluxeTransactionServer,

AccountDatabase)
DepositMoneyCase2: path_c (CashierTerminal, EconomicTransactionServer)

WithdrawMoney_Cashier: one-of (WithdrawMoneyCase1, WithdrawMoneyCase2)
WithdrawMoneyCase1: path_c (CashierTerminal, DeluxeTransactionServer,

AccountDatabase)
WithdrawMoneyCase2: path_c (CashierTerminal, EconomicTransactionServer)

TransferMoney_Cashier: one-of (TransferMoneyCase1, TransferMoneyCase2)
TransferMoneyCase1: path_c (CashierTerminal, DeluxeTransactionServer,

AccountDatabase)
TransferMoneyCase2: path_c (CashierTerminal, EconomicTransactionServer)

2. Constraint Expresssion

2.1 Default Constraint
default (DepositMoney_Cashier : DepositMoneyCase2)
default (WithdrawMoney_Cashier : WithdrawMoneyCase2)
default (TransferMoney_Cashier : TransferMoneyCase2)

2.2 Satisfaction Constraint
mutual_require (DepositMoneyCase1, WithdrawMoneyCase1, TransferMoneyCase1)
mutual_require (DepositMoneyCase2, WithdrawMoneyCase2, TransferMoneyCase2)

Transaction Server ID := loginAccount()

Exit account successfully

Exit account

Deposit done successfully

deposit()

Login account successfully

Cashier

Enter account number
and account type

:CashierTerminal :TransactionServerManager :EconomicTransactionServer

Enter deposit amount

exitAccount()

Figure 5.15 Sequence Diagram of Deposit Money (Case 1)

93

5.3.4 Refining Critical Use Case Model to Abstract Component Level

From the sequence diagram and component diagram, summarize the

communication path for each critical use case to refine the Critical Use Case Model

CUCM) shown in Figure 5.5 and Table 5.8 to the abstract component level as shown in

Table 5.23.

5.3.5 Identifying Component Interfaces and Communication Patterns

For each abstract component, two kinds of interfaces need to be identified,

required interfaces and provided interfaces. The provided interfaces are those interfaces

provided by a design feature to other design features. The required interfaces are those

interfaces required by this design feature from other design features. In order to identify

these interfaces, the first thing in this step is to summarize the actions, inputs and outputs

of each component from the sequence diagrams for each abstract component. Table 5.24

shows an example of the summarization for the TransactionServerManger. A complete

list of all summaries is in Appendix D.

The next step is to derive interfaces. This is the process of grouping related

functions across abstract components. The procedure is based on the summary of actions,

inputs and outputs for abstract components. Reference to the use case model and

requirement model in the domain analysis stage is also a great help to derive meaningful

interfaces. Each interface is documented in an interface description table, which consists

of the precondition, postcondition, invariant, communication pattern, and description for

each function in the interface. It also consists of variation of the interface. For this work,

the variation is caused solely by the communication patterns. Communication patterns

considered in this work include: one-way, two-way-synchronous and two-way-

asynchronous, which are denoted as cp1, cp2s and cp2a, respectively. All these interfaces

form the Interface Model. From the Interface Model, summarize the provided interfaces

and required interfaces for each abstract component. The whole process is iterative and

incremental, and usually needs prototyping.

94

Table 5.24 Function Summary for TransactionManager
in the Banking Domain Example

TransactionServerManager

Actions Inputs Outputs Communication Pattern
loginAccount Account Number, Account Type Transaction Server ID two-way-synchronous
exitAccount Account Number, Account Type NONE two-way-synchronous
openAccount Account Number, Account Type Account Number,

Account Type
Transaction Server ID

two-way-synchronous

closeAccount Account Number, Account Type Transaction Server ID two-way-synchronous

Table 5.25 Interface Description for IAccountDatabase
in the Banking Domain Example

IAccountDatabase

1. Syntax
Account getAccount(String accountNumber, int accountType);

Pre: values have been provided for the accountNumber and accountType.
Post: if the specified account exits, return the account; otherwise return NULL.
Invariant: accountNumber, accountType
Communication Pattern: cp2s or cp2a
Description: This function returns an account object as identified by the parameters. It

returns null if the account specified does not exist.
void saveAccount(Account account);

Pre: account is valid
Post: the database has been updated appropriately.
Invariant: account
Communication Pattern: cp2s or cp2a
Description: This function updates the account if it already exists; otherwise it adds an

entry in the database for this new account.
void removeAccount(String accountNumber, int accountType);

Pre: values have been provided for the account and accountType
Post: the account specified is removed and the database has been updated appropriately
Invariant: accountNumber, accountType
Communication Pattern: cp2s or cp2a
Description: This function removes the specified account if it exists; otherwise it does

nothing.

2. Variation
IAccountDatabase: one-of (IAccountDatabaseCase1, IAccountDatabaseCase2)
IAccountDatabaseCase1: { cp2s}
IAccountDatabaseCase2: { cp2a}

3. Default Constraint
default (IAccountDatabase : IAccountDatabaseCase1)

95

For the banking domain example, following interfaces are identified to cover the

functionality in the requirement model: ICustomerManagement, IAccountManagement,

ITransactionServerManager, IAccountDatabase, and IUserValidation. Table 5.26 is an

example of an interface description. The expression, IAccountDatabaseCase1: {cp2s},

means that all functions in IAccountDatabaseCase1 are two-way-synchronous. A

complete list of all interface descriptions for the banking domain example is in Appendix

E. The provided interfaces and required interfaces for each abstract component are

summarized by consulting the sequence diagrams and are shown in Table 5.26, which is

actually a summary of the abstract components at the function/interface level. Table 5.26

can be expressed in the UDSL as shown in Table 5.27. Then it is expressed in disjunctive

normal form in Table 5.28 and Table 5.29 with consideration of all the variations of

interfaces, which forms the Abstract Component Interface Model (ACIM) in the UGDM.

Table 5.26 Provided Interfaces and Required Interfaces of Abstract Components

for the Banking Domain Example

Abstract Components Provided Interface Required Interface
CashierTerminal ICustomerManagement

IAccountManagement
IValidation

ICustomerManagement
IAccountManagement
ITransactionServerManager
IValidation

ATM IAccountManagement
IValidation

IAccountManagement
ITransactionServerManager
IValidation

TransactionServerManager ITransactionServerManager NONE
EconomicTransactionServer ICustomerManagement

IAccountManagement
NONE

DeluxeTransactionServer ICustomerManagement
IAccountManagement

IAccountDatabase

AccountDatabase IAccountDatabase NONE
CashierValidationServer IValidation NONE
CustomerValidationServer IValidation NONE

96

Table 5.27 Abstract Components at Functional/Interface Level in UDSL for the
Banking Domain Example

Abstract Components at Functional/Interface Level

� Design Feature Expression
interface (CashierTerminal: provided_interface (ICustomerManagement, IAccountManagement,

IValidation), required_interface (ICustomerManagement, IAccountManagement,
ITransactionServerManager, IValidation))

interface (ATM: provided_interface (IAccountManagement, IValidation), required_interface
(IAccountManagement, ITransactionServerManager, IValidation))

interface (CashierValidationServer: provided_interface (IValidation), required_interface (NONE))
interface (CustomerValidationServer: provided_interface (IValidation), required_interface (NONE))
interface (TransactionServerManager: provided_interface (ITransactionServerManager),

required_interface (NONE))
interface (EconomicTransactionServer: provided_interface (IAccountManagement,

ICustomerManagement), required_inteface (NONE))
interface (DeluxeTransactionServer: provided_interface (IAccountManagement,

ICustomerManagement), required_interface (IAccountDatabase))
interface (AccountDatabase: provided_interface (IAccountDatabase), required_interface (NONE))

Table 5.28 ACIM in the UDSL for the Banking Domain Example

Abstract Component Interface Model
1. Disjunctive Normal Form

CashierTerminal: CashierTerminalCase1
ATM: ATMCase1
CashierValidationServer: CashierValidationServerCase1
CustomerValidationServer: CustomerValidationServerCase1
TransactionServerManager: TransactionServerManagerCase1
EconomicTransactionServer: EconomicTransactionServerCase1
DeluxeTransactionServer: one-of (DeluxeTransaxtionServerCase1,

DeluxeTransactionServerCase2)
AccountDatabase: one-of (AccountDatabaseCase1, AccountDatabaseCase2)

interface (CashierTerminalCase1: provided_interface (ICustomerManagementCase1,

IAccountManagementCase1), required_interface (ICustomerManagementCase1,
IAccountManagementCase1, ITransactionServerManagerCase1, IValidationCase1))

interface (ATMCase1: provided_interface (IAccountManagementCase1), required_interface
(IAccountManagementCase1, ITransactionServerManagerCase1, IValidationCase1))

interface (CashierValidationServerCase1: provided_interface (IValidationCase1),
required_interface (NONE))

interface (CustomerValidationServerCase1: provided_interface (IValidationCase1),
required_interface (NONE))

interface (TransactionServerManagerCase1: provided_interface
(ITransactionServerManagerCase1), required_interface (NONE))

interface (EconomicTransactionServerCase1: provided_interface (IAccountManagementCase1,
ICustomerManagementCase1), required_inteface (NONE))

interface (DeluxeTransaxtionServerCase1: provided_interface (IAccountManagementCase1,
ICustomerManagementCase1), required_interface (IAccountDatabaseCase1))

 (Continued in Table 5.29)

97

Table 5.29 ACIM in the UDSL for the Banking Domain Example
(Continued from Table 5.28)

Abstract Component Interface Model

(Continued from Table 5.28)
interface (DeluxeTransactionServerCase2: provided_interface

(IAccountManagementCase1, ICustomerManagementCase1), required_interface
(IAccountDatabaseCase2))

interface (AccountDatabaseCase1: provided_interface (IAccountDatabaseCase1),
required_interface (NONE))

interface (AccountDatabaseCase2: provided_interface (IAccountDatabaseCase2),
required_interface (NONE))

2. Constraint Expression
2.1 Default Constraint

default (DeluxeTransactionServer : DeluxeTransactionServerCase1)
default (AccountDatabase : AccountDatabaseCase1)

2.2 Satisfaction Constraint
mutual_require (DeluxeTransactionServerCase1, AccountDatabaseCase1)
mutual_require (DeluxeTransactionServerCase2, AccountDatabaseCase2)

Next, from the ACIM in Table 5.28 and Table 5.29, derive a mapping for an

abstract component from the component level to the function/interface level to impose

the default constraints. The mapping is shown in Table 5.30.

Table 5.30 Mapping of Abstract Component from Component Level to
Function/Interface Level in the UDSL for the Banking Domain Example

Mapping of Abstract Component from Component Level to Functional/Interface Level

map (CashierTerminal: CashierTerminalCase1)
map (ATM: ATMCase1)
map (CashierValidationServer: CashierValidationServerCase1)
map (CustomerValidationServer: CustomerValidationServerCase1)
map (TransactionServerManager: TransactionServerManagerCase1)
map (EconomicTransactionServer: EconomicTransactionServerCase1)
map (DeluxeTransactionServer: DeluxeTransaxtionServerCase1)
map (AccountDatabase: AccountDatabaseCase1)

5.3.6 Refining Critical Use Case Model to Function/Interface Level

This step refines the critical use case model at the component level created in

Section 5.3.4 to the function/interface level by consulting the ACIM and the result is

98

shown in Table 5.31 and Table 5.32. At this level, each critical use case is expressed as a

path of function calls. The communication for each function call is also stated. Section

4.2.2.4 has more information about this expression. The model at this level is crucial for

deriving the QoS Composition and Decomposition Model as described in Section 5.3.10.

Table 5.33 shows the normalized expression for the critical use case model at the

function/interface level. The disjunctive normal form of this critical use case model in

Table 5.34 is derived from the normalized expression.

Table 5.31 CUCM at Function/Interface Level for the Banking Domain Example

Critical Use Case Model (Function/Interface Level)

1. Use Case Expression

CriticalUseCase: all (DepositMoney_Cashier, WithdrawMoney_Cashier,
TransferMoney_Cashier)

DepositMoney_Cashier: one-of (DepositMoneyCase1, DepositMoneyCase2)
DepositMoneyCase1: one-of (DepositMoneyCase1_1, DepositMoneyCase1_2)
DepositMoneyCase1_1: path_f(CashierTerminal.deposit[cp2s],

DeluxeTransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

DepositMoneyCase1_2: path_f (CashierTerminal.deposit[cp2s],
DeluxeTransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

DepositMoneyCase2: path_f (CashierTerminal.deposit[cp2s],
EconomicTransactionServer.deposit[cp2s])

WithdrawMoney_Cashier: one-of (WithdrawMoneyCase1, WithdrawMoneyCase2)
WithdrawMoneyCase1: one-of (WithdrawMoneyCase1_1, WithdrawMoneyCase1_2)
WithdrawMoneyCase1_1: path_f (CashierTerminal.withdraw[cp2s],

DeluxeTransactionServer.withdraw[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

WithdrawMoneyCase1_2: path_f (CashierTerminal.withdraw[cp2s],
DeluxeTransactionServer.withdraw[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

WithdrawMoneyCase2: path_f (CashierTerminal.transfer[cp2s],
EconomicTransactionServer.transfer[cp2s])

TransferMoney_Cashier: one-of (TransferMoneyCase1, TransferMoneyCase2)
TransferMoneyCase1: one-of (TransferMoneyCase1_1, TransferMoneyCase1_2)
TransferMoneyCase1_1: path_f (CashierTerminal.transfer[cp2s],

DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

 TransferMoneyCase1_2: path_f (CashierTerminal.transfer[cp2s],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

TransferMoneyCase2: path_f (CashierTerminal.transfer[cp2s],
EconomicTransactionServer.transfer[cp2s])

 (Continued in Table 5.32)

99

Table 5.32 CUCM at Function/Interface Level for the Banking Domain Example
(Continued from Table 5.31)

Critical Use Case Model (Function/Interface Level)
(Continued from Table 5.31)
2. Constraint Expression

2.1 Default Constraint
default (DepositMoney_Cashier : DepositMoneyCase2)
default (WithdrawMoney_Cashier : WithdrawMoneyCase2)
default (TransferMoney_Cashier : TransferMoneyCase2)

2.2 Satisfaction Constraint
mutual_require (DepositMoneyCase1_1, WithdrawMoneyCase1_1, TransferMoneyCase1_1)
mutual_require (DepositMoneyCase1_2, WithdrawMoneyCase1_2, TransferMoneyCase1_2)
mutual_require (DepositMoneyCase2, WithdrawMoneyCase2, TransferMoneyCase2)

Table 5.33 Normalized Expression of CUCM at Function/Interface Level
for the Banking Domain Example

Normalized Expression of Critical Use Case Model (Function/Interface Level)

1. Use Case Expression
CriticalUseCase: all (one-of (one-of(DepositMoneyCase1_1, DepositMoneyCase1_2),

DepositMoneyCase2), one-of (one-of(WithdrawMoneyCase1_1, WithdrawMoneyCase1_2),
WithdrawMoneyCase2), one-of (one-of(TransferMoneyCase1_1, TransferMoneyCase1_2),
TransferMoneyCase2))

DepositMoneyCase1_1: path_f(CashierTerminal.deposit[cp2s], DeluxeTransactionServer.deposit[cp2s],
AccountDatabase.getAccount[cp2s], AccountDatabase.saveAccount[cp2s])

DepositMoneyCase1_2: path_f (CashierTerminal.deposit[cp2s], DeluxeTransactionServer.deposit[cp2s],
AccountDatabase.getAccount[cp2a], AccountDatabase.saveAccount[cp2a])

DepositMoneyCase2: path_f (CashierTerminal.deposit[cp2s], EconomicTransactionServer.deposit[cp2s])
WithdrawMoneyCase1_1: path_f (CashierTerminal.withdraw[cp2s],

DeluxeTransactionServer.withdraw[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

WithdrawMoneyCase1_2: path_f (CashierTerminal.withdraw[cp2s],
DeluxeTransactionServer.withdraw[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

WithdrawMoneyCase2: path_f (CashierTerminal.transfer[cp2s],
EconomicTransactionServer.transfer[cp2s])

TransferMoneyCase1_1: path_f (CashierTerminal.transfer[cp2s],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

TransferMoneyCase1_2: path_f (CashierTerminal.transfer[cp2s],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

TransferMoneyCase2: path_f (CashierTerminal.transfer[cp2s],
EconomicTransactionServer.transfer[cp2s])

2. Constraint Expression
2.1 Default Constraint

default (CriticalUseCase : all (DepositMoneyCase2, WithdrawMoneyCase2, TransferMoneyCase2))
2.2 Satisfaction Constraint

mutual_require (DepositMoneyCase1_1, WithdrawMoneyCase1_1, TransferMoneyCase1_1)
mutual_require (DepositMoneyCase1_2, WithdrawMoneyCase1_2, TransferMoneyCase1_2)
mutual_require (DepositMoneyCase2, WithdrawMoneyCase2, TransferMoneyCase2)

100

Table 5.34 CUCM in Disjunctive Normal Form at Function/Interface Level
in the UDSL for the Banking Domain Example

Disjunctive Normal Form of the Critical Use Case Model (Function/Interface Level)

1. Disjunctive Normal Form

CriticalUseCase: one-of (CriticalUseCase1, CriticalUseCase2, CriticalUseCase3)
CriticalUseCase1: all (DepositMoneyCase1_1, WithdrawMoneyCase1_1,

TransferMoneyCase1_1)
CriticalUseCase2: all (DepositMoneyCase1_2, WithdrawMoneyCase1_2,

TransferMoneyCase1_2)
CriticalUseCase3: all (DepositMoneyCase2, WithdrawMoneyCase2, TransferMoneyCase2)

DepositMoneyCase1_1: path_f(CashierTerminal.deposit[cp2s],

DeluxeTransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

DepositMoneyCase1_2: path_f (CashierTerminal.deposit[cp2s],
DeluxeTransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

DepositMoneyCase2: path_f (CashierTerminal.deposit[cp2s],
EconomicTransactionServer.deposit[cp2s])

WithdrawMoneyCase1_1: path_f (CashierTerminal.withdraw[cp2s],
DeluxeTransactionServer.withdraw[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

WithdrawMoneyCase1_2: path_f (CashierTerminal.withdraw[cp2s],
DeluxeTransactionServer.withdraw[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

WithdrawMoneyCase2: path_f (CashierTerminal.transfer[cp2s],
EconomicTransactionServer.transfer[cp2s])

TransferMoneyCase1_1: path_f (CashierTerminal.transfer[cp2s],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

TransferMoneyCase1_2: path_f (CashierTerminal.transfer[cp2s],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

TransferMoneyCase2: path_f (CashierTerminal.transfer[cp2s],
EconomicTransactionServer.transfer[cp2s])

2. Constraint Expression

2.1 Default Contraint
default (CriticalUseCase : CriticalUseCase3)

5.3.7 Refining Architecture Model in Disjunctive Normal Form
from Component Level to Function/Interface Level

This step refines the Architecture Model in Disjunctive Normal Form (AMDNF)

at the component level (shown in Table 5.22) developed in Section 5.3.2 into the

101

function/interface level by consulting the ACIM. The result is shown in Table 5.35. The

normalization process takes into account the satisfaction constraints in the ACIM. There

are totally 6 disjunctives in the AMDNF at function/interface level for the banking

domain example.

Table 5.35 AMDNF at Function/Interface Level
in the UDSL for the Banking Domain Example

Disjunctive Normal Form of Architecture Model (Function/Interface Level)

1. Disjunctive Normal Form

Bank: one-of (BankCase1, BankCase2, BankCase3, BankCase4)
BankCase1: BankCase1_1
BankCase2: one-of (BankCase2_1, BankCase2_2)
BankCase3: BankCase3_1
BankCase4: one-of (BankCase4_1, BankCase4_2)

BankCase1_1: all (ATMCase1, CashierTerminalCase1, CustomerValidationServerCase1,

CashierValidationServerCase1, TransactionServerManagerCase1,
EconomicTransactionServerCase1)

BankCase2_1: all (ATMCase1, CashierTerminalCase1, CustomerValidationServerCase1,
CashierValidationServerCase1, TransactionServerManagerCase1,
DeluxeTransactionServerCase1, AccountDatabaseCase1)

BankCase2_2: all (ATM, CashierTerminalCase1, CustomerValidationServerCase1,
CashierValidationServerCase1, TransactionServerManagerCase1,
DeluxeTransactionServerCase2, AccountDatabaseCase2)

BankCase3_1: all (CashierTerminalCase1, CashierValidationServerCase1,
TransactionServerManagerCase1, EconomicTransactionServerCase1)

BankCase4_1: all (CashierTerminal, CashierValidationServer,
TransactionServerManager, DeluxeTransactionServerCase1,
AccountDatabaseCase1)

BankCase4_2: all (CashierTerminalCase1, CashierValidationServerCase1,
TransactionServerManagerCase1, DeluxeTransactionServerCase2,
AccountDatabaseCase2)

2. Default Constraint

default (BankCase2 : BankCase2_1)
default (BankCase4 : BankCase4_1)

From Table 5.22 (AMDNF at the component level) and Table 5.35 (AMDNF at

the function/interface level), derive a mapping for the AMDNF from the component level

to the function/interface level to impose the default constraints as shown in Table 5.35.

The mapping is shown in Table 5.36.

102

Table 5.36 Mapping of AMDNF from Component Level to
Function/Interface Level in the UDSL for the Banking Domain Example

Mapping of AMDNF from Component Level to Function/Interface Level

map (BankCase1: BankCase1_1)
map (BankCase2: BankCase2_1)
map (BankCase3: BankCase3_1)
map (BankCase4: BankCase4_1)

5.3.8 Mapping Architecture Model in Disjunctive Normal
Form to Critical Use Case Model (Function/Interface Level)

This step is to create a mapping from the Architecture Model in Disjunctive

Normal Form (AMDNF) at the function/interface level to the Critical Use Case Model

(CUCM) in disjunctive normal form at the function/interface level, i.e., a mapping from

Table 5.35 to Table 5.34 for the banking domain example. The mapping is based on the

component diagrams developed in Section 5.3.2 and the sequence diagrams developed in

Section 5.3.3. The components participate in the realization of the critical use cases

which form a case of the CUCM must be among the components in a case of the

AMDNF. The mapping from the AMDNF to the CUCM is unique. However, more than

one case of the AMDNF can be mapped to one case of the CUCM. This mapping is a

connection relating the system architecture to the system QoS. The mapping for the

banking domain example is shown in Table 5.37.

Table 5.37 AMDNF and CUCM Mapping
(Function/Interface Level) for the Banking Domain Example

AMDNF and CUCM Mapping

(Function/Interface Level)

mapping (BankCase1_1 : CriticalUseCase3)
mapping (BankCase2_1 : CriticalUseCase1)
mapping (BankCase2_2 : CriticalUseCase2)
mapping (BankCase3_1 : CriticalUseCase3)
mapping (BankCase4_1 : CriticalUseCase1)
mapping (BankCase4_2 : CriticalUseCase2)

103

5.3.9 Creating Abstract Component Model

The Abstract Component Model (ACM) consists of the UMM specifications for

all the abstract components in a DCS domain. The UMM specification is described in

detail in Section 3.3. A full list of UMM specifications for all the abstract components in

the banking domain example is in Appendix F.

5.3.10 Creating QoS Composition and Decomposition Model

The QoS Composition and Decomposition Model (QCDM) for a domain consists

of all the composition and decomposition rules for the identified QoS parameters on each

critical use case. Table 5.38 shows the QoS composition and decomposition meta-rules

used in the banking domain example. These rules are domain independent, and are called

meta-rules to distinguish them from the rules derived from them for critical use cases of a

specific DCS domain. Details about the QoS composition and decomposition meta-rules

are in [SUN02, SUN03].

The QCDM for a specific DCS domain is a direct application of the QoS

composition and decomposition mea-rules. The application of the meta-rules in Table

5.38 on throughput and endToEndDelay for all the critical use cases of the banking

domain example results in the QoS composition and decomposition rules for the banking

domain which are organized into four sets and are listed in Appendix G.

From the QoS composition and decomposition rules for the banking domain example, the

QoS Composition and Decomposition Model (QCDM) for each case of the Critical Use

Case Model (CUCM) in disjunctive normal form can be derived. The results are shown in

Appendix H. The QoS composition and decomposition model for each bank instance is

then determined when the architecture model is determined. The connection between

these two is done through the mapping developed in Section 5.3.8.

104

Table 5.38 QoS Composition and Decomposition Meta-Rules Used
in the Banking Domain Example

QoS Composition and Decomposition Meta-Rules

Notations:
[CriticalUseCaseModelCase]: a case of a critical use case model at disjunctive normal form
{ CriticalUseCases} : all critical use cases in a case of a critical use case model
[CriticalUseCase]: one critical use cases in a case of a critical use case model
<CriticalUseCase>: all function calls in a critical use case

1. QoS Composition Rules:

1.1 Composition rules for throughput
1.1.1 System_througput = [CriticalUseCaseModelCase]_throughput
1.1.2 [CriticalUseCaseModelCase]_throughput = min ({ CriticalUseCases} _throughput)
1.1.3 Let [CriticalUseCase]: path (CALL1, CALL2, …, CALLN)

T1 = CALLN_throughput

�
�
�

��

�

��

��

ssynchronou is CALL if),T/1t_throughpu1/CALL1/T

usasynchrono is CALL if),T t,_throughpu(CALL minT

2n-N1-n1n-Nn

2n-N1-n1n-Nn

[CriticalUseCase]_throughput = TN

1.2 Composition rules for endToEndDelay
1.2.1 System_endToEndDelay = [CriticalUseCaseModelCase]_endToEndDelay
1.2.2 [CriticalUseCaseModelCase]_endToEndDelay = max

({ CriticalUseCases} _endToEndDelay)
1.2.3 [CriticalUseCase]_endToEndDelay = sum (<CriticalUseCase>_endToEndDelay)

2. QoS Decomposition Rules:

2.1 Decomposition rules for throughput
[CriticalUseCaseModelCase]_throughput > System_throughput
{ CriticalUseCases} _throughput > System_throughput
<CriticalUseCase>_throughput > System_throughput

2.2 Decomposition rules for endToEndDelay
[CriticalUseCaseModelCase]_endToEndDelay < System_endToEndDelay
{ CriticalUseCases} _endToEndDelay < System_endToEndDelay
<CriticalUseCase>_endToEndDelay < System_endToEndDelay

5.4 Ordering Language Design

An ordering language is anther important artifact in the UGDP. The ordering

language is the interface that the application engineers (users) employ to order concrete

systems from a DCS family. This language is a kind of domain specific language. It can

be textual, tabular, graphical, or even natural-language-like.

The UDSL itself can be viewed as an ordering language. In this sense, the UDSL

defined a layered DSL which can specify a system to different levels of detail. Three

levels can be identified in the UDSL as an ordering language in the UA process: level of

105

system architecture, level of functionality (including communication patterns) and level

of the QoS. These three levels are inherent in the UDSL. During the UGDP,

transformations and mappings are developed for various models, thus the UDSL is

hierarchical and is powerful enough to express to the level of detail necessary for the

application programmers. In order to use the UDSL as an ordering language, an

application engineer must study the UGDM for a DCS family and becomes a domain

expert in some degree.

The tabular ordering language is an attractive method to order a system. It is

simple to use when compared with the UDSL. In this language, the possible systems in a

system family are categorized and available options are provided. Here is an analog from

the real world. When ordering a car from a dealer, there is no need to describe to the

dealer to the great detail about what kind of car is needed. There is no need to describe to

the extreme detail like suspension, trunklet, etc. Cars are ordered by stating the model,

the trim and the options. The same can be done in generative programming. In the

banking domain example, we can state the class of the bank, options and desired QoS to

order a bank as shown in Table 5.39. Or simply say “get me a bank” , in which case, the

Basic Bank is returned as default.

Table 5.39 Tabular Ordering Language for
 the Banking Domain Example

 BasicBank AdvancedBank SuperBank
User Terminal

ATM � �
CashierTerminal � � �

System QoS
endToEndDelay � (2000) � (1500) � (1000)

throughput � (500) � (900) � (1500)
Legend:

� standard requirements
� optional requirements
() default values

106

Table 5.40 Mapping Rules for the Tabular Ordering Language
of the Banking Domain Example

Mapping Rules for the Tabular Ordering Language of the Banking Domain Example

If no ATM and system throughput <= 650 operations/second, map to BankCase3
Else if no ATM and system throughput > 650 operations/second, map to BankCase4
Else if 1 ATM and system throughput <= 800 operations/second , map to BankCase1
Else if 1 ATM and system throughput > 800 operations/second , map to BankCase2
Else if the copy number of ATM is greater than or equal to 2, map to BankCase2

Next a mapping from the tabular ordering language to the UGDM described in the

UDSL needs to be designed. There are no rules how the mapping should be done. The

mapping is domain dependent and it changes overtime just like the “car ordering

language” which changes every year when the new car models are available. For the

banking domain example, the simple mapping rules are designed to translate the tabular

ordering language into the Architecture Model in Disjunctive Normal Form at the

component level. The mapping rules are shown in Table 5.40.

Natural-language-like ordering language is also very attractive and it is very

flexible. However, it is more difficult to implement and requires natural language

processing support. Domain specific order information is needed by a natural language

processor in order to process any query in that domain. The work on natural language

processing to support the UniFrame is carried out by University of Alabama at

Birmingham [LEE02, LEE02a], a collaborator of UniFrame research. An example of an

order in natural-language-like format in the banking domain example is: “Generate a

bank system with 1 ATM and 2 cashier terminals. The turn around time is less than 2000

microseconds, and the throughput is greater than 500 operations/second”.

This chapter presents in detail the UGDP for developing the UGDM for a selected DCS

domain. The UGDP is an iterative and incremental process. The UGDM evolves during

iterations of the UGDP. This is the best way to achieve a stable and mature UGDM for a

specific DCS domain. In next chapter, the UniFrame System Generation Infrastructure

(USGI) that uses the UGDM and implements the UGDM processing logic is provided.

107

6. The UNIFRAME SYSTEM GENERATION INFRASTRUCTURE (USGI)

Chapter 4 describes the UGDM which captures the common and variable

properties of a DCS family. The UGDM takes into consideration of the importance of

QoS in order to generate a QoS-aware DCS. Chapter 5 describes the UGDP, which is a

process for creating a UGDM. Presented in this chapter is the UniFrame System

Generation Infrastructure (USGI), which is the third part of the USGPF. The USGI is an

infrastructure for realizing system-level generative programming. The description of the

USGI in this chapter focuses on the high-level design, workflow modeling, the algorithm

and the interaction of modules that comprise the USGI. These descriptions are at a

conceptual level and are not tied to any software or technology that may implement the

architecture.

6.1 Overview of the USGI Architecture

The USGI helps to automatically generate a DCS from a DCS family by

integrating heterogeneous distributed software components based on a UGDM. It is not

intended for component code generation. It reflects the application engineering phase in

the component based software engineering process and directly uses the UGDM created

during domain engineering.

The architecture of the USGI is shown in Figure 6.1. It consists of several

modules. Here is the brief description of the functionality of each module in this

framework.

� URDS: This module is responsible for the active component management. It

dynamically discovers and manages the heterogeneous software components

deployed over the network by component developers. It also assists in the finding

108

of the concrete components for the abstract components required by the System

Generator which is discussed below.

� Wrapper and Glue Generator: This module is responsible for creating the

necessary wrapper and glue code to bridge heterogeneous distributed software

components. The glue code also contains necessary instrumentations to compute

the system QoS for the integrated system, which is the part of the dynamic system

QoS validation.

� UGDM Knowledgebase (UGDMKB): The module stores the UGDM and provides

information about the UGDM to other modules in the framework. The module

can be implemented as relational database tables or libraries, or both. For

example, the QCDM can be implemented as a library and other models can be

implemented as tables in a relational database.

� UGDMKB Builder Terminal: This is the module that provides the user interface to

the software engineers who are responsible for the development and maintenance

of the UGDM and the UGDMKB.

� UGDMKB Generator: This module is responsible for creating the UGDM and

represents the UGDM in databases and/or libraries. This module automates the

UGDP process to the extent feasible.

� Application Programmer Terminal: This is the module that provides the user

interface to the application programmers or system assemblers and enables them

to generate a DCS.

� Order Processor: This module is responsible for determining a DCS architecture

instance from a DCS family that satisfies the system requirements provided by the

application programmers or system assemblers according to the UGDM. A

natural language processor may assist to process natural language-like orders

using Two-Level Grammar (TLG) [LEE02, LEE02a].

� System Generator: This module is responsible for generating a DCS from a DCS

family based on the UGDM. The System Generator implements the processing

logic of the UGDM. In the USGI design, the UGDM is separated from the

109

processing logic of the UGDM. The merit of this approach is that as the UGDM

evolves, the only thing that needs to be updated and maintained is the UGDMKB.

Figure 6.1 USGI Architecture

The detailed algorithms for each module are discussed in Section 6.3. The next

section presents the dynamic modeling of the USGI workflow which shows the overall

functionality of the framework, the role of each module in it and how the modules

interact with each other to achieve the functionality of the USGI.

110

6.2 Modeling the USGI Workflow

The UML [BOO98, OMG03] modeling techniques proposed by Grady Booch and

his colleagues are used to model the dynamic view of the USGI. The overall functionality

of the USGI is modeled in an activity diagram shown in Figure 6.2. The interactions

between each module in the framework are demonstrated by the object flow in Figure

6.3.

6.2.1 USGI Activity Diagram

An activity diagram [BOO98, OMG03] shows the flow from one activity to

anther within a system. The diagram shows a set of activities, the sequential or branching

flow from activity to activity in a system. The diagram illustrates the dynamic view of a

system. Activity diagrams are especially important in modeling the functionality of a

system. They model the system as a whole.

The major functionality of the USGI is to support the application engineering with

generative programming to create a QoS-aware DCS from the available heterogeneous

distributed software components which are geographically dispersed over the network.

The major activities associated with this purpose include: gather system requirements,

determine the required component types, called abstract components; these two terms are

used interchangeably in this work), search the existing concrete components for the

required abstract components, select a set of concrete components to assemble a DCS,

determine the adapters which are required to bridge heterogeneous software components,

validate the system QoS (both statically by the QoS composition and decomposition

rules, and dynamically by the system behavior sampling which applies event grammars),

integrate and deploy a system, and generate its UniFrame description which is an ongoing

effort. The flow between these major activities is shown in Figure 6.2.

111

Figure 6.2 USGI Activity Diagram

[Satisfied]

[Else]

[Else]

[Else]

[Found All]

[Else]

[Determined]

Supply System
Requirements

Determine Required
Component Types

Search for Existing
Concrete Components

Search for Existing
Glue and Wrappers

Generate Non-
existing Glue
and Wrappers

Integrate the
Target System

Modify System
Requirements

Validate the
Integrated
System

Deploy the Integrated System
and Generate the System
UniFrame Description

Abort the Task

Determine Required
Glue and Wrappers

Supply or Develop
the Non-existing
Concrete Components

Select a New Set
of Components

[Else]

[Found All]

[Meet Requirements]

[Satisfied] [Else]

[Modified]

[Else] [Satisfied]

[Else]

112

Figure 6.3 USGI Object Flow

113

6.2.2 USGI Object Flow

The object flow [BOO98, OMG03] is a special activity diagram that includes

participating objects (modules in the USGI). It emphasizes the flow of control among

different modules and shows the dependency relationships between them. Two kinds of

relationships can be shown: the kinds of objects that have primary responsibility for

performing an action and other objects whose values are used or determined by the

action. The object flow partitions activities in an activity diagram into groups, each group

representing a business process (module) that is responsible for those activities. In the

UML, each group is called a swimlane. Swimlanes are a kind of package for organizing

responsibility for activities. Thus, a swimlane specifies a locus of activities. Every

activity belongs to exactly one swimlane, but transitions may cross lanes.

In the USGI, there is one swimlane for each module in the object flow, which is

shown in Figure 6.3. The USGI object flow is derived from the USGI activity diagram by

partitioning the activity diagram into swimlanes with the participating modules. It reflects

all the activities in the USGI activity diagram while zooming into most of the activities.

Thus, it reflects more detail about the flow and control information than the USGI

activity diagram.

6.3 Modules of USGI

This section describes the functionality of each module in the USGI architecture,

with emphasis on the System Generator module. Some modules in the USGI are results

from other members of the UniFrame research, such as the URDS [SIR02], and the

Wrapper and Glue Generator [CAO02, ZHA02]. This section provides only a brief

description about this kind of modules.

6.3.1 Data Structures Used in Algorithms in Modules of USGI

Tables 6.1, 6.2 and 6.3 show the data structures used in the algorithms by various

modules of the USGI, which are described in the following sections.

114

Table 6.1 Data Structure for Algorithms in System Generator

AbstractComponent

abstractComponent

A data structure that holds the UMM

description of an abstract component.

AdapterType

adapterType

A data structure that defines an adapter type.

It consists of a bridge type for two different

component models and two component types

that need to be bridged and their

corresponding component models.

ConcreteComponent

concreteComponent,

adapterComponent

A data structure that holds the UMM

description of a concrete component. An

adapter itself is a component.

Hash Table

availableConcreteComponentTable

A mapping between component types and

the corresponding list of available concrete

components. The names of component types

serve as the keys for this mapping.

Hash Table

selectedConcreteComponentTable

A mapping between component types and

the corresponding list of selected concrete

components. The names of component types

serve as the keys for this mapping.

Hash Table

availableAdapterTable

A mapping between adapter types and the

corresponding list of available instances. The

names of adapters serve as the keys for this

mapping.

Hash Table

resultTable

A mapping between component IDs and

their corresponding detailed UniFrame

Specifications. A data structure used in the

URDS.

List

systemBluePrintList

A list of instances of systemBluePrint for

corresponding target system instances.

115

Table 6.2 Data Structure for Algorithms in System Generator
(Continued from Table 6.1)

List

requiredAbstractComponentList

A list of all the required abstract

components for a system specification.

List

availableConcreteComponentList

A list of available concrete components for

an abstract component.

List

selectedConcreteComponentList

A list of selected concrete components for

an abstract component.

List

adapterTypeList

A list of required adapter types for a set of

selected concrete components.

List

availableAdapterList

A list of available adapter instances for an

adapter type.

List

postprocessingCollaboratorList

A list of post-processing collaborators of an

abstract component.

QoSCompositionModel

qosCompositionModel

A data structure or a library that contains

the QoS Composition Model for a domain.

QueryBean

queryBean

A data structure that holds a query about an

abstract component. It is passed from the

System Generator to the URDS.

QueryManager

queryManager

A controller component in the URDS

framework that interfaces other modules in

the USGI.

Queue

selectedConcreteComponentTableQueue

A queue that contains instances of possible

selectedConcreteComponentTable. Each

table is an instance of the potential target

system.

116

Table 6.3 Data Structure for Algorithms in System Generator
 (Continued from Table 6.2)

SystemBluePrint

systemBluePrint

A data structure that contains detailed

information about a system blueprint for a

target system instance. It includes the related

system specification, the selected concrete

components, the necessary adapters, QoS

validation results, etc.

SystemQoS

expectedSystemQoS

staticSystemQoS

dynamicSystemQoS

A data structure that holds values of the

system QoS. It can hold the expected system

QoS, the static/predicted system QoS or the

dynamic system QoS under different

circumstances.

SystemSpecification

systemSpecification

A data structure that contains details about a

system specification for a target system. It

includes a list of required component types,

the corresponding architecture instance and

the critical use case instance, etc.

6.3.2 URDS

The tasks of the URDS are to provide an active distributed component

management for the USGI in the UniFrame. It attempts to actively discover components

and registers them with the Headhunters in the URDS. An important advantage of having

such kind of service is that the concrete components are not coded in the System

Generator, thus, adding and removing a concrete component does not impact the System

Generator. Chapter 3 provides a brief overview of the URDS. For details of the URDS

and the related algorithms, see [SIR02]. The following algorithm (ALGORITHM_1)

provides the process for a URDS Proxy to interface with URDS service. It interfaces with

QueryManager, a service component in the URDS. The URDS Proxy is responsible for

117

passing the queries for concrete components from the System Generator to the URDS,

processes the results from the URDS before presenting them to the System Generator.

ALGORITHM_1 URDS_PROXY_SEARCH_COMPONENTS

IN: abstractComponent

OUT: availableConcreteComponentList

Generate a queryBean with information from abstractComponent

resultTable = CALL queryManager with queryBean

PUT each value in resultTable into availableConcreteComponentList

RETURN availableConcreteComponentList

END ALGORITHM_1 URDS_PROXY_SEARCH_COMPONENTS

6.3.3 Wrapper and Glue Generator

Considering the heterogeneous nature of components, it is conceivable that the

software realization of DCS will require an ensemble of components adhering to different

models. This requires adapter components to sit between the heterogeneous components

to facilitate their cooperation. Thus, the computational aspect of an adapter component

indicates the two models for which it provides interoperability. The adapter components

achieve interoperability using the principles of wrap and glue technology [LUQ01]. The

research work on the adapter is underway at University of Alabama, a collaborator of the

UniFrame research. Figure 6.4 shows a simplified model for an adapter. Each adapter

component consists of a bridge (adapter core) and two wrapper and glues. Each adapter

core provides translation capabilities for a pair of specific component models. Each

wrapper and glue takes care of interfacing with a specific component type (abstract

component). The Wrapper and Glue Generator is responsible for creating necessary

wrapper and glues and assembles them with appropriate adapter core. A bridge can be

used for generating multiple adapters. The ALGORITHM_2 outlined below shows the

basic steps for creating an adapter. More research is underway to incorporate

instrumentation code for QoS measurements into the glues.

118

ALGORITHM_2 WGG_GENERATE_WRAPPER_GLUE

IN: adapterType

OUT: adapterComponent // If adapterComponent is NULL,

 // it means the adapter cannot be generated.

GET the bridge type from adapterType

GET an appropriate bridge for the bridge type

IF the bridge does not exist

RETURN NULL // The adapter can not be generated.

END IF

GET two component types from adapterType

Generate appropriate wrapper and glues for the two component types

IF any of the two wrapper and glues can not be generated

RETURN NULL // The adapter can not be generated.

END IF

adapterComponent = Assemble the bridge and two wrapper and glues

RETURN adapterComponent

END ALGORITHM_2 WGG_GENERATE_WRAPPER_GLUE

Bridge

Wrapper and
Glue for

Component
Type 1

Figure 6.4 Adapter Model

Wrapper and
Glue for

Component
Type 2

119

6.3.4 UGDM Knowledge Base (UGDMKB)

The UGDM Knowledge Base (UGDMKB) is an important module in the USGI. It

stores the UGDM created in the UGDP. The UGDMKB can contain both relational

database tables and libraries for a DCS domain. For example, the computing for the

system QoS according to the QoS composition rules can be implemented as a library and

other models in the UGDM can be represented as relational database tables. The Order

Processor and System Generator use the UGDMKB during their activities. There are no

special algorithms designed for this module.

6.3.5 UGDMKB Builder Terminal

This module provides a graphical user interface to the UGDMKB builders to

access the UGDMKB Generator. UGDMKB builders create the UGDMKB through this

module. The general algorithm for this module is described in ALGORITHM_3.

ALGORITHM_3 UGDMKB_BT_CREATE_UGDMKB

IN: the domain knowledge of a DCS domain

OUT: UGDMKB

CALL ALGORITHM_4 UGDMKBG_CREATE_UGDMKB with the domain

knowledge of a DCS domain

END ALGORITHM_3 UGDMKB_BT_CREATE_UGDMKB

6.3.6 UGDMKB Generator

The UGDMKB Generator transforms the UGDM into predefined formats

(relational database tables or libraries) to be stored in the UGDMKB. The UGDMKB

Generator also consists of tools to automate the UGDP to the extent feasible to create the

UGDM for a DCS domain. The algorithm provided in ALGORITHM_4 is the overall

process for this module at a high conceptual level. Chapter 5 describes the process in

120

detail. Research work is underway to apply the Generic Modeling Environment (GME)

[GME] to automate the process.

ALGORITHM_4 UGDMKBG_CREATE_UGDMKB

IN: the domain knowledge of a DCS domain

OUT: UGDMKB

CREATE requirement models (use case model and critical use case model)

DESIGN a layered architecture

CREATE component diagrams

CREATE sequence diagrams

REFINE the critical use case model to the abstract component level

IDENTIFY component interfaces and communication patterns

REFINE the critical use case model to the function/interface level

REFINE the architecture model in disjunctive normal form from component level

to function/interface level

MAP the architecture model in disjunctive normal form to the critical use case

model (function/interface level)

CREATE the abstract component model

CREATE the QoS composition and decomposition model

GENERATE the UGDM from the artifacts created from the above steps

PUT the UGDM into the UGDMKB

END ALGORITHM_4 UGDMKBG_CREATE_UGDMKB

6.3.7 Application Programmer Terminal

This module interacts with application programmers to fulfill an “order” of a

system from a system family. The order can be either in certain predefined formats or in a

natural- language-like format. This module passes the order to an Order Processor to get

the target system specification, and then supplies the system specification to a System

121

Generator to generate the best system that meets the requirement. The general algorithm

for this module is described in ALGORITHM_5.

ALGORITHM_5 APT_ORDER_SYSTEM

IN: an order for a system

OUT: systemBluePrint

systemSpecification = CALL ALGORITM_6 ORDER_PROCESSOR_ORDER

with the order for a system

IF systemSpecification is NULL

RETURN NULL // no system can fulfill the requirements

ELSE

systemBluePrint = CALL ALORITHM_7 SG_GENERATE_SYSTEM

with systemSpecification

RETURN systemBluePrint

END IF

END ALGORITHM_5 APT_ORDER_SYSTEM

6.3.8 Order Processor

The Order Processor is responsible for determining the target system

specification from an “order” . This order can be presented in a predefined format or

natural-language like manner. A Natural Language Processor (NLP) assists Order

Processor in the USGI to process an order in a natural-language-like format. The NLP is

based on the theory of Two-Level Grammar (TLG) [BRY02] and natural language

specifications [BRY00]. TLG allows queries over the knowledge base, such as a problem

space or a solution space, to be stated in a natural-language-like manner. This is

consistent with the manner in which the UMM is stated. For details of the TLG and the

natural-language-like query processing in the UniFrame, see also [LEE02, LEE02a,

BRY02a]. The work on the NLP is underway at University of Alabama at Birmingham, a

122

collaborator of the UniFrame research. The general algorithm for this module is

described in ALGORITHM_6.

ALGORITHM_6 ORDER_PROCESSOR_ORDER

IN: an order for a system

OUT: systemSpecification

DETERMINE the system architecture instance at the component level according

to the mapping from the requirement space to the solution space

DETERMINE the system architecture instance at function/interface level

according to the architecture model mapping

DETERMINE the required components according to the system architecture

instance at the function/interface level

DETERMINE the critical use case model instance according to the architecture

model critical use case model mapping

DETERMINE the expected component QoS according to the QoS decomposition

rules

DETERMINE the multiplicity of required components according to the order and

the multiplicity model

PUT all information derived above in systemSpecifiction

RETURN systemSpecification

END ALGORITHM_6 ORDER_PROCESSOR_ORDER

6.3.9 System Generator

The System Generator takes a system specification and returns a generated

system. The System Generator is responsible for system assembly and system validation.

The validation includes two phases: static validation (by QoS composition rules) and

dynamic validation (by the event grammars with user supplied test cases). The System

Generator is like an automobile production line. It reads a system specification, acquires

the necessary components through the URDS and/or the Wrapper and Glue Generator,

123

checks component availability, assembles the components, tests and validates the system,

and then releases the product (i.e., an integrated system that satisfies the necessary QoS

requirements). Section 6.3.9.1 provides the process for generating a DCS in the

UniFrame. The following sections describe various algorithms of the System Generator.

Table 6.4 Process for System Generation

Step 1: Contact the URDS to acquire concrete components for the required abstract

components. Check if concrete components are available for all abstract

components. If they are available, go to step 2. If concrete components for any

abstract components are not available, prompt the application programmer to

provide these components. If the application programmer can provide the

missing concrete components, go to step 2. If not, abort the process.

Step 2: Select an appropriate set of concrete components from the available concrete

components. If no new set is available, go to step 7.

Step 3: Check if any adapter is needed for bridging the selected concrete components.

If no adapter is needed, go to step 4. Otherwise, contact the URDS to acquire

the adapter(s). If the URDS can not find all the needed adapters, contact the

Wrapper and Glue Generator to generate the wrapper and glues to assemble

the adapter(s). If the Wrapper and Glue Generator can generate all the needed

missing adapters, go to step 4. If not, discard this set of concrete components

and go to step 2. Otherwise, this collection forms a potential DCS.

Step 4: Validate the system QoS statically by the QoS Composition Model. If the

system meets the QoS requirements, go to Step 5. If not, discard this set and

go to step 2.

Step 5: Configure the system according to the UGDM.

Step 6: Validate the system QoS dynamically by the user provided test cases (done by

event grammars). If the system meets the QoS requirements, keep the system,

otherwise, discard it. Go to step 2.

Step 7: Select the best system and return the system.

124

6.3.9.1 Process for System Generation

This section outlines the steps for system generation taken by the System

Generator in Table 6.4. The algorithms for these steps are described in the following

sections. The System Generator is the central connection in the USGI. It requires services

from all other modules in the framework. The various algorithms reflect its relationship

with those modules.

6.3.9.2 Algorithm for Generating a System

ALGORITHM_7 outlines the process for generating a system from a system

specification. This algorithm applies the rest of the algorithms designed for the System

Generator. It returns the best system in terms of the system QoS. The notion of best

system can be defined differently under different circumstances, For example, the best

system can be defined as the one with the best system QoS, or the one that has the closest

system QoS to the system QoS requirements.

ALGORITHM_7 SG_GENERATE_SYSTEM

IN: systemSpecification

OUT: systemBluePrint

availableConcreteComponentTable = CALL ALGORITHM_8

SG_ACQUIRE_CONCRETE_COMPONENTS

with systemSpecification

IF availableConcreteComponentTable is NULL

RETURN NULL //Abort the process.

 // The system specification cannot be fulfilled.

ELSE

Generate selectedConcreteComponentTableQueue from

 availableConcreteComponentTable and systemSpecification

WHILE selectedConcreteComponentTableQueue is NOT empty

CREATE a systemBluePrint for the possible target system instance

125

selectedConcreteComponentTable = Remove one table from

selectedConcreteComponentListQueue

ADD selectedConcreteComponentTable to systemBluePrint

adapterTypeList = CALL ALGORITHM_9

 SG_DETERMINE_ADAPTER_TYPES with

 selectedConcreteComponentTable

and systemSpecification

IF adapterTypeList is NULL //Fail to determine required adapters

Continue to the END WHILE // Discard the combination

ELSE

ADD adapterTypeList to systemBluePrint

IF adapterTypeList is NOT empty

availableAdapterTable = CALL ALGORITHM_10

 SG_ACQUIRE_ADAPTERS

with adapterTypeList

IF availableAdapterTable is NULL

Continue to the END WHILE // Discard the

 // combination

END IF

END IF

staticSystemQoS = CALL ALGORITHM_11

SG_GET_STATIC_SYSTEM_QOS

IF staticSystemQoS does not meet expectedSystemQoS in

systemSpecification

Continue to the END WHILE // Discard the

 // combination

ELSE

ADD staticSystemQoS to systemBluePrint

CALL ALGORITHM_12

 SG_ASSEMBLE_SYSTEM

126

IF system assembly failed

Continue to the END WHILE // Discard the

 // combination

END IF

dynamicSystemQoS = CALL ALGORITHM_13

SG_GET_DYNAMIC _SYSTEM_QOS

IF dynamicSystemQoS does not meet

expectedSystemQoS in systemSpecification

Continue to the END WHILE // Discard the

 // combination

ELSE

ADD dynamicSystemQoS to systemBluePrint

Put systemBluePrint for this target system

instance in systemBluePrintList

END IF

END IF

END IF

END WHILE

END IF

SORT systemBluePrintList by dynamicSystemQoS

systemBluePrint = GET systemBlueprint with the best dynamicSystemQoS from

the sorted systemBluePrintList

RETURN systemBluePrint

END ALGORITHM_7 SG_GENERATE_SYSTEM

6.3.9.3 Algorithm for Acquiring Concrete Components

ALGORITHM_8 outlines the process for acquiring the concrete components via

the URDS for the required abstract components in a system specification. The request is

passed from the System Generator to the URDS through the URDS Proxy.

127

ALGORITHM_8 SG_ACQUIRE_CONCRETE_COMPONENTS

IN: systemSpecification

OUT: availableConcreteComponentTable

// If availableConcreteComponentTable is NULL, it means some abstract

// components do not have available concrete components. Thus, the

// system specification cannot be fulfilled.

requiredAbstractComponentList = GET the list of required abstract components

from systemSpecification

FOREACH abstract component in requiredAbstractComponentList

availableConcreteComponentList = GET a list of available concrete

components for the abstract component from the URDS.

IF availableConcreteComponentList is empty

availableConcreteComponentList = GET available concrete

components for the abstract component from the

Application Programmer.

END IF

IF availableConcreteComponentList is empty

Return NULL //Abort the process. The system specification can

not be fulfilled.

ELSE

PUT the abstract component name and

 availableConcreteComponentList in

 availableConcreteComponentTable

END IF

END FOREACH

RETURN availableConcreteComponentTable

END ALGORITHM_8 SG_ACQUIRE_CONCRETE_COMPONENTS

128

6.3.9.4 Algorithm for Determining Adapter Types

ALGORITHM_9 outlines the process of determining the adapter types for a

selected combination of concrete components that forms a possible target system

instance.

ALGORITHM_9 SG_DETERMINE_ADAPTER_TYPES

IN: selectedConcreteComponentTable, systemSpecification

OUT: adapterTypeList // 1) If adapterTypeList is empty, it means no

// need for adapters. 2) If adapterTypeList is NULL, it

// means some adapter type cannot be determined; thus, the

// system specification cannot be fulfilled.

GET the domain name from the systemSpecification

bridgeTable = GET the bridge table from the UGDMKB for the domain

componentInteractionTable = GET the abstract component interaction table from

the UGDMKB

FOREACH concrete component (C1) in selectedConcreteComponentTable

postprocessingCollaboratorList = GET the corresponding list of post-

processing collaborator types from componentInteractionTable for

the type of the concrete component

IF postprocessingCollaboratorList is NOT empty

FOREACH abstract component in postprocessingCollaboratorList

selectedConcreteComponentList = GET the selected

concrete component list for the abstract component

from selectedConcreteComponentTable

FOREACH concrete component (C2) in

selectedConcreteComponentList

IF C1 and C2 are of different component models

GET the bridge type from bridgeTable

IF the bridge type exists

129

PUT the bridge type, two abstract

components and two

component models (for C1 and

C2) in adapterTypeList

ELSE

RETURN NULL //Abort the task.

//The requirement cannot be

// fulfilled.

END IF

END IF

END FOREACH

END FOREACH

END IF

END FOREACH

RETURN adapterTypeList

END ALGORITHM_9 SG_DETERMINE_ADAPTER_TYPES

6.3.9.5 Algorithm for Acquiring Adapters

ALGORITHM_10 outlines the process for the System Generator to acquire

adapters from the URDS via the URDS Proxy. If no adapter is found, the System

Generator sends the request to the Wrapper and Glue Generator.

ALGORITHM_10 SG_ACQUIRE_ADAPTERS

IN: adapterTypeList

OUT: availableAdapterTable

// If availableAdapterTable is NULL, it means some adapter types do not

// have available instances; thus, the system specification cannot

// be fulfilled.

FOREACH adapter in adapterTypeList

130

availableAdapterList = GET a list of adapter instances for the adapter type

from the URDS.

IF availableAdaperList is empty

availableAdapterList = GET the adapter instances from the

Wrapper and Glue Generator

END IF

IF availableAdapterList is empty

RETURN NULL //Abort the process, the task can not be fulfilled.

ELSE

PUT the name of the adapter type and availableAdapterList in

availableAdapterTable

END IF

END FOREACH

RETURN availableAdapterTable

END ALGORITHM_10 SG_ACQUIRE_ADAPTERS

6.3.9.6 Algorithm for Getting Static System QoS

ALGORITHM_11 outlines the process for getting the static system QoS from the

QoS Composition Model, which is implemented as a library. The static system QoS is

predicted from the component QoS advertised for the concrete components by the

component developers. These component QoS are documented in the UMM

specifications when the concrete components are deployed over the network.

ALGORITHM_11 SG_GET_STATIC_SYSTEM_QOS

IN: selectedConcreteComponentList, systemSpecification

OUT: staticSystemQoS

GET qosCompositionModel for the domain from UGDMKB

// The model is implemented as a library

staticSystemQoS = CALL qosCompositionModel with

131

selectedConcreteComponentList and systemSpecification

RETURN staticSystemQoS

END ALGORITHM_11 SG_ GET_STATIC_SYSTEM_QOS

6.3.9.7 Algorithm for Assembling a System

ALGORITHM_12 outlines the process for assembling a system from the selected

concrete components and possible necessary adapters. The configuration knowledge used

in system assembling includes the component interaction model and the component-level

multiplicity model. Domain dependent configuration knowledge can also be defined

when necessary.

ALGORITHM_12 SG_ASSEMBLE_SYSTEM

IN: systemBluePrint

OUT: boolean // 1) true: system is assembled successfully

 // 2) false: assembly failed due to some reason,

 // such as network errors, etc.

requiredAbstractComponentList = GET the list of required abstract components

from the systemBluePrint

selectedConcreteComponentTable = GET the table from systemBluePrint

componentInteractionTable = GET the abstract component interaction table from

the UGDMKB

requiredAdapterList = GET the list of required adapters from systemBluePrint

foundAdapterTable = GET the found adapters from systemBluePrint

multiplicityModel = GET the component-level multiplicity model from the

UGDMKB

FOREACH concrete component in selectedConcreteComponentTable

LOCK the component for assembly (exclusively for a system assembler)

END FOREACH

//configure the system according to the component-level multiplicity model

FOREACH abstract component (A1) in requiredAbstractComponentList

132

postProcessingCollaboratorList = GET the list of the post-processing

collaborators for the abstract component from

componentInteractionTable

IF postProcessingCollaboratorList is NULL

Continue to the END FOREACH

END IF

selectedConcreteComponentList (initiator) = GET the list of the selected

concrete components for the abstract component A1 from

selectedConcreteComponentTable

FOREACH abstract component (A2) in postProcessingCollaboratorList

selectedConcreteComponentList (responder) = GET the list of the

selected concrete components for the abstract component

A2 from selectedConcreteComponentTable

IF the multiplicity of A1 to A2 is one to one

FOREACH concrete component (C1) in

selectedConcreteComponentList (initiator)

GET a concrete component (C2) from

selectedConcreteComponentList (responder)

GET component ID (ID1) from C1

IF C1 and C2 are of the same technology

GET component ID (ID2) from C2

ELSE

GET adapterType for C1 and C2 from

requiredAdapterTypeList

GET the adapter from foundAdapterTable

for adapterType

GET component ID (ID2) from the adapter

END IF

GET the handle to C1 by ID1

CONFIGURE C1 with ID2

133

END FOREACH

ELSE IF the multiplicity of A1 to A2 is one to many

FOREACH concrete component (C1) in

selectedConcreteComponentList (initiator)

FOREACH concrete component (C2) in

selectedConcreteComponentList (responder)

GET component ID (ID1) from C1

IF C1 and C2 are of the same technology

GET component ID (ID2) from C2

ELSE

GET adapterType for C1 and C2

from requiredAdapterTypeList

GET the adapter from

foundAdapterTable for

adapterType

GET component ID (ID2) from the

adapter

END IF

GET the handle to C1 by ID1

CONFIGURE C1 with ID2

END FOREACH

END FOREACH

ELSE IF the multiplicity of A2 to A1 is one to many

FOREACH concrete component (C2) in

selectedConcreteComponentList (responder)

FOREACH concrete component (C1) in

selectedConcreteComponentList (initiator)

GET component ID (ID1) from C1

IF C1 and C2 are of the same technology

GET component ID (ID2) from C2

134

ELSE

GET adapterType for C1 and C2

from requiredAdapterTypeList

GET the adapter from

foundAdapterTable for

adapterType

GET component ID (ID2) from the

adapter

END IF

GET the handle to C1 by ID1

CONFIGURE C1 with ID2

END FOREACH

END FOREACH

END IF // other multiplicity situation also needs to be handled

 // those listed are some most common situations

END FOREACH

END FOREACH

CONFIGURE other domain dependent configuration knowledge if necessary

END ALGORITHM_12 SG_ASSEMBLE_SYSTEM

6.3.9.8 Algorithm for Getting Dynamic System QoS

ALGORITHM_13 outlines the process for getting dynamic system QoS through

the event grammars model (the system behavior model), which is being developed at

New Mexico State University, a collaborator of the UniFrame research.

ALGORITHM_13 SG_ GET_DYNAMIC_SYSTEM_QOS

IN: systemBluePrint

OUT: dynamicSystemQoS

GET handler to evevenGrammarModel for the domain.

135

dynamicSystemQoS

= CALL eventGrammarModel with the customer supplied test cases

RETURN dynamicSystemQoS

End ALGORITHM_13 SG_ GET_DYNAMIC_SYSTEM_QOS

This chapter presents in detail the high level concepts of the USGI in the USGPF. The

description covers the architecture, the workflow modeling of the system and the

algorithms for each module in the framework. In the next chapter, a prototype design and

implementation with multi-tier architecture for the USGI is described. The banking

domain example developed in Chapter 4 and Chapter 5 serve as the example to

demonstrate the prototype.

136

7. THE USGI PROTOTYPE DESIGN AND IMPLEMENTATION

Chapter 6 describes the USGI at the conceptual level. The architecture, workflow

modeling and algorithms presented in Chapter 6 do not adhere to any specific

implementational technology. The USGI can be realized in several different technologies.

In this chapter, the details of a prototype design and implementation of the USGI using

Java is presented. The prototype serves to demonstrate the feasibility of the proposed

USGPF in this thesis and allows experimentation with it.

7.1 Technology

This section describes the J2EETM technology [SM01, SM02, SM02a] that is the

model for designing and implementing the prototype of the USGI. J2EETM technology

provides a component-based approach to the design, development, assembly, and

deployment of enterprise applications. The J2EETM platform offers a multi-tiered

distributed application model, the ability to reuse components, integrated Extensible

Markup Language (XML)-based data interchange, a unified security model, and flexible

transaction control.

7.1.1 J2EETM Application Model

A J2EETM application uses a multi-tiered distributed application model. In this

model, the application logic is divided into components according to functions. The

various application components that make up a J2EETM application are installed on

different machines. The installation of the components depends on the tier to which the

application component belongs in the multi-tiered J2EETM environment. The multi-tiered

137

architecture is an extension of the traditional two-tier client-server model [SM02a]. In a

four-tier architecture, the client is replaced by a web browser and HTML pages powered

by servlet/JavaServer PagesTM technology hosted on a web server. A multithreaded

application server sits between the web sever and a backend database. Figure 7.1 shows

the four-tier architecture of J2EETM applications [SM02].

Figure 7.1 Multi-tier Architecture of J2EETM Applications (from [SM02])

7.1.2 J2EETM Components

J2EETM applications are made up of J2EETM components [SM02, SM02a]. A

J2EETM component is a self-contained functional software unit that is assembled into a

J2EETM application with its related classes and files, and it communicates with other

components. The J2EETM specification defines the following J2EETM components: Client

Components, Web Components and Business Components.

7.1.2.1 Client Components

Client Components run on client machines. The Client Components include Web

Clients, Applets and Application Clients.

138

A Web Client consists of two parts: dynamic Web pages containing various types

of markup language (e.g., HTML and XML), which are generated by Web Components

running in the Web tier, and a Web browser, which renders the pages received from the

server. A Web client is sometimes called a thin client. Thin clients usually do not do

things like query databases, execute complex business rules, or connect to legacy

applications.

A Web page received from the Web tier can include an embedded Applet. An

Applet is a small client application written in the Java programming language that

executes in the Java virtual machine installed in the Web browser. However, client

systems will likely need a Java Plug-in and possibly a security policy file in order for the

applet to successfully execute in the Web browser.

An Application Client provides a way for users to handle tasks that require a

richer user interface than can be provided by a markup language. It typically has a

graphical user interface (GUI) created from Swing or Abstract Window Toolkit (AWT)

APIs.

7.1.2.2 Web Components

J2EETM Web Components can be either servlets or Java Server Pages (JSP).

Servlets are Java programming language classes that dynamically process requests and

construct responses. JSP pages are text-based documents that execute as servlets but

allow a more natural approach to creating static content. Static HTML pages and applets

are bundled with Web Components during application assembly, but are not considered

Web Components by the J2EETM specification. Server-side utility classes can also be

bundled with Web Components and, like HTML pages, are not considered Web

Components. Like the client tier, the Web tier might include a JavaBeans component

[STE00], which is discussed in Section 7.1.2.4, to manage the user input and send that

input to enterprise beans running in the business tier for processing.

139

7.1.2.3 Business Components

Business Components are Enterprise JavaBeansTM (EJBTM) components

(enterprise beans), which are deployed on application servers and form the business tier.

The business components provide the business logic that solves or meets the needs of a

particular business domain such as banking, retail, or finance. The heavyweight

operations in clients in the traditional client-server model are off-loaded to enterprise

beans executing on the application server where they can leverage the security, speed,

services, and reliability of J2EETM server-side technologies.

7.1.2.4 JavaBeans Component

The server and client tiers might also include components (JavaBeans

components) based on the JavaBeans Component Architecture [SM03a] to manage the

data flow between an application client or applet and components running on the J2EETM

server or between server components and a database. JavaBeans components are not

considered J2EETM components by the J2EETM specification. JavaBeans components are

reusable software components that are written in the Java programming language.

JavaBeans components have instance variables and get and set methods for accessing the

data in the instance variables. JavaBeans components used in this way are typically

simple in design and implementation, but should conform to the naming and design

conventions outlined in the JavaBeans component architecture.

7.1.3 Service Technologies

The J2EETM platform [SM02] service technologies allow applications to access a

variety of services. The prominent service technologies supported are JDBCTM API

[SM03b] which provides access to databases, Java Transaction API (JTA) [SM03c] for

transaction processing, Java Naming and Directory InterfaceTM (JNDI) [SM03d] which

provides access to naming and directory services, J2EETM Connector Architecture

[SM03e] which supports access to enterprise information systems, and Java API for

140

XML�Processing (JAXP) [SM03f]�which enables applications to parse and transform

XML documents independent of a particular XML processing implementation. The

service technologies used in the prototype are described below.

7.1.3.1 JDBCTM API 2.0

The JDBCTM API provides methods to invoke SQL commands from Java

programming language methods. The JDBC API has two parts: an application-level

interface used by the application components to access a database, and a service provider

interface to attach a JDBC driver to the J2EETM platform.

7.1.3.2 Java API for XML Processing 1.1

XML is a language for representing text-based data so the data can be read and

used by any program or any tool. Programs and tools can generate XML documents that

other programs and tools can read and use. Java API for XML Processing (JAXP)

supports processing of XML documents using DOM, SAX, and XSLT parsers.

Depending on the needs of the application, developers have the flexibility to swap

between XML processors (such as high performance vs. memory conservative parsers)

without making application code changes.

7.1.4 Communication Technologies

Communication technologies provide mechanisms for communication between

clients and servers and between collaborating objects hosted by different servers. Some

of the communications technologies supported by the J2EETM Platform [SM01] include

Transport Control Protocol over Internet Protocol (TCP/IP), Hypertext Transfer Protocol

HTTP, Secure Socket Layer SSL, Java Remote Method Protocol (JRMP), Java IDL,

Remote Method Invocation over Internet Inter ORB Protocol (RMI-IIOP), Java Message

Service (JMS), JavaMail and Java Activation Framework. The prototype uses the HTTP

141

1.0 Protocol for communication between the browser-based clients and server side

components. The inter-component communication on the server side is achieved through

Java Remote Method Invocation (RMI). The communication techonologies used in the

prototype are described below.

7.1.4.1 HTTP 1.0 Protocol

The Hypertext Transfer Protocol (HTTP) [WWW03] HTTP has been in use by

the World-Wide Web global information initiative since 1990. It is an application-level,

generic stateless protocol for distributed, collaborative, hypermedia information systems.

A feature of HTTP is the typing and negotiation of data representation, allowing systems

to be built independently of the data being transferred.

7.1.4.2 Java Remote Method Invocation (RMI)

Java Remote Method Invocation (RMI) [SM03g] is a set of APIs in the Java

programming language that enables developers to build distributed applications. RMI

uses Java language interfaces to define remote objects, and it combines Java serialization

technology and the Java Remote Method Protocol (JRMP) for performing remote method

invocations. JRMP is a proprietary stream-base protocol on top of the TCP/IP.

7.2 USGI Prototype Design

The USGI prototype is designed as a multi-tiered distributed application based on

the J2EETM model. The USGI functionality is partitioned into modules, and these

modules are decomposed into specific objects to represent the behavior and data of the

application. The prototype adopts the Model-View-Controller (MVC) architecture. The

MVC architecture [GAM95, YOU95] can be described as: “ The Model represents the

application data and the rules that govern access and modification of this data. The View

renders the contents of a model. It accesses data from the model and defines how that

142

data should be presented. The Controller defines application behavior; it translates user

gestures into actions to be performed by the model” . The design of the USGI is shown in

Figure 7.2.

Figure 7.2 USGI Prototype Design

The View of the USGI consists of browsers, which provides the interfaces for the

users (UGDMKB Builders and Application Programmers/System Assemblers/System

Integrators) to interact with the system. The View of the USGI forms the Client Tier of

the USGI architecture.

The Model of the USGI consists of the Business Tier and the Database Tier of the

USGI architecture. The Business Tier includes the following modules of the USGI:

UGDMKB Generator, Order Processor, System Generator, Wrapper and Glue Generator

RMI

Controller

RMI RMI RMI

RMI

RMI

Web
Tier

http

http

http

http

JDBC

JDBC

JDBC

URDS
Proxy

Wrapper
and Glue
Generator
Proxy

System
Generator

Order
Processor

UGDMKB
Generator

Web Server

usgf.jsp

UGDMKB

Application
Programmer
Browser

UGDMKB
Builder
Browser

UGDMKBBuilder.jsp

UGDMKB
Generator
Proxy

System
Generator
Proxy

AcquireConcrete
Components.jsp

Model View

Client
Tier

Business
Tier

Database
Tier

Query
Processor
Proxy

 OrderProcessor.jsp
NLP
Proxy

NLP

143

Proxy, URDS Proxy, and Natural Language Processor (NLP), which is actually a proxy

to the NLP implemented in C++ by the University of Alabama, a collaborator of the

UniFrame research. The Database Tier includes the relational database tables of the

UGDMKB. The library of the UGDMKB is not shown in the figure as an individual

module. The library is used directly by the System Generator.

The Controller of the USGI consists of two parts: proxy classes and JSP pages.

The proxy classes mediate information exchanges between the JSP Pages and the

modules in the Business Tier. The JSP pages receive inputs from and render results to

users via the browsers in the Client Tier.

7.3 USGI Prototype Implementation

This section describes the implementation of the USGI prototype using Java in

detail. Before the description of the implementation, the outline of the platform and the

environment, and the communication infrastructure for the implementation are described.

7.3.1 Platform and Environment

In the prototype created for this thesis, the algorithms outlined for the various

modules in Chapter 6 are implemented using the JavaTM
 2 Platform, Standard Edition

(J2SE) version 1.4.0 [SM03]. The service components in the business tier are

implemented as Java-RMI based services. The UGDMKB is a database-oriented

implementation based on Oracle, version 8.1.7 [ORA03]. The web-based components

(JSPs), which service client interactions, are housed in the Tomcat 3.3a Servlet/JSP

Container [APA03a].

7.3.2 Communication Infrastructure

The communication between proxy classes in the Web Tier and the Business

Components and the communication among the Business Components are based on Java

144

RMI. The connections to the databases are established using the JDBC APIs. Interactions

between the clients (users) and the Web Components are based on the HTTP protocol.

7.3.3 Implementation Details

This section organizes the details of the USGI implementation according to the

four-tier architecture. The description is presented in the following order: Client Tier,

Web Tier, Business Tier and Database Tier.

7.3.3.1 Client Tier

The client tier consists of the Client Components, which are web browsers in the

USGI. These Client Components provide the views (i.e., the interfaces) for the USGI,

through which the users (UGDMKB Builders and Application Programmers) can interact

with the system. The JSP and JavaBeans work together to implement the views. The JSP

pages dynamically generate html pages. JavaBeans encapsulate information exchanges

between Client Components, Web Components and Business Components. The following

JSP pages provide views to users: USGI.jsp, OrderWithoutNLP.jsp, OrderWithNLP.jsp,

Order.jsp, AvailableConcreteComponents.jsp, SelectedConcreteComponents.jsp,

DetermineAdapterTypes.jsp, AcquireAdapters.jsp, DynamicComponentQoS.jsp,

StaticSystemValidation.jsp, DynamicSystemValidation.jsp, ComponentDescription.jsp,

and UGDMKBGeneration.jsp. These JSP pages are part of the Web Components, which

forms the Controller in the MVC architecture. Not all the JSP pages in the Web Tier

provide views to the users. The Web Components are explained in the next section.

7.3.3.1.1 View Provided by usgi.jsp

Figure 7.3 illustrates the view provided by usgi.jsp. This view shows the main

demonstrations available in the prototype: System Generation without NLP, System

145

Generation with NLP and UGDMKB Generation. This view also provides choices for

running the USGI under different simulation modes.

Figure 7.3 The View Provided by usgi.jsp

System Generation without NLP demonstrates the ordering of a system without

natural language query processing support. On the other hand, System Generation with

NLP demonstrates the ordering of a system with natural language query processing

support. UGDMKB Generation demonstrates the processing of the UGDM models in the

XML format into the Oracle database by using the XML parsers implemented with the

Xerces Java Parser from Apache [APA03]. These parsers are described in Section

7.3.3.3.1.

146

 The simulation modes include URDS Simulation, UGDMKB Simulation and

Target System Simulation. The URDS Simulation simulates the URDS functionality of

searching for concrete components of the banking domain by local data structures. The

UGDMKB Simulation also simulates the relational database tables of the UGDMKB for

the banking domain by local data structures. Under the Target System Simulation, the

dynamic component QoS testing, the system assembly and the dynamic system QoS

validation are simulated without running the bank components. These modes provide a

convenient way to demonstrate the USGI without setting up the whole system.

Figure 7.4 View Provided by OrderWithoutNLP.jsp

7.3.3.1.2 View Provided by OrderWithoutNLP.jsp

Figure 7.4 illustrates the view provided by OrderWithoutNLP.jsp. This view is the

user interface to order a system without natural language processing support. The

147

ordering language is implemented as a table. This is an example of the implementation of

a tabular DSL for ordering a system from the banking domain developed in Chapter 5.

The view allows application developers to select different options of bank system types:

Basic Bank, Advanced Bank and Super Bank, which differ from each other as shown by

the parameters in the figure: number of user terminals (both ATM and Cashier Terminal)

and system QoS requirements (end to end delay and throughput). It allows specifying

different parameters to order a bank system from a selected bank system type.

7.3.3.1.3 View Provided by OrderWithNLP.jsp

Figure 7.5 illustrates the view provided by OrderWithNLP.jsp. This view is the

user interface to order a system with natural language query processing support. Ordering

requirements are input as natural-language-like style in the provided text area. An

example is shown in Figure 7.5.

Figure 7.5 View Provided by OrderWithNLP.jsp

148

7.3.3.1.4 View Provided by Order.jsp

Figure 7.6 illustrates the view provided by Order.jsp. In this view the system

specification that meets the ordering requirement is displayed. The system specification

in the view includes System Name, Architecture ID (both at the component level and at

the interface level), Expected System QoS, Required Abstract Components and their

Expected Component QoS which is derived through QoS Decomposition Model.

Figure 7.6 View Provided by Order.jsp

149

This view also illustrates the two system generation choices provided by the

USGI: Generate System (Manual) and Generate System (Automatic). In the choice of

Generate System (Manual), the system allows users to interact with and make decisions

during the system generation process. In the choice of Generate System (Automatic), the

system will go through all the possibilities and return the best system to users. The best

system can be defined as the one with the best system QoS, or as the one with the closest

system QoS to the ordering requirements. In the choice of Generate System (Manual), the

users have the choice to decide which system is the best to their needs.

7.3.3.1.4 View Provided by AvailableConcreteComponents.jsp

Figure 7.7 illustrates the view provided by AvailableConcreteComponents.jsp.

This view shows whether concrete components have been found for the required abstract

components or not. If concrete components for a required abstract component have been

found, a click on the link under the column of Searching Result brings a list of concrete

components that were found by the URDS. If no concrete components have been found

for a particular abstract component, then the entry of the correspondent cell under the

column of Searching Result is “NOT FOUND”. This view also displays a message asking

users to select a set of concrete components to assemble an integrated system.

Figure 7.7 View Provided by AvailableConcreteComponents.jsp

150

7.3.3.1.5 View Provided by SelectConcreteComponents.jsp

Figure 7.8 illustrates the view provided by SelectConcreteComponents.jsp. This

view displays a list of found concrete components for a specific abstract component.

Users can check the checkbox to select components. A click on the link under the column

of ComponentID brings the UMM specification for the corresponding concrete

component. The links under the column of Dynamic QoS Tesing direct users to the page

to test the QoS of the components.

Figure 7.8 View Provided by SelectConcreteComponents.jsp

7.3.3.1.6 View Provided by DetermineAdapterTypes.jsp

Figure 7.9 illustrates the view provided by DetermineAdapterTypes.jsp. This view

displays the required adapter types based on the set of selected concrete components.

Each row of the table in the view indicates one required adapter type, which is described

by three columns: Bridge Type, Preprocessing Component and Postprocessing

Component. The Bridge Type indicates the two component models that the adapter is

capable of bridging. The Preprocessing Component initiates the interaction and the

151

Postprocessing Component responds in the interaction. The interactions between these

two heterogeneous components are mediated by the adapter.

Figure 7.9 View Provided by DetermineAdapterTypes.jsp

Figure 7.10 View Provided by AcquireAdapters.jsp

7.3.3.1.7 View Provided by AcquireAdapters.jsp

Figure 7.10 illustrates the view provided by AcquireAdapters.jsp. This view

displays the adapters found for the required adapter types by the URDS. The adapters

152

themselves are concrete components. The link under the column Found Adapter leads to

the UMM description for the adapter. In the current prototype, if more than one adapter is

found for a required adapter type, the system randomly selects one adapter.

7.3.3.1.8 View Provided by DynamicComponentQoS.jsp

Figure 7.11 illustrates the view provided by DynamicComponentQoS.jsp. This

view displays the results of testing component QoS dynamically in the column called

Dynamic QoS. The advertised QoS of the component is also displayed. The difference

between these two is shown in the column called Deviation. The dynamic testing of the

component QoS assumes that the component developer provides a test interface for the

component and this interface is used to validate the advertised component QoS values. If

no such interface is provided, this view displays the message “This component can not be

tested. No testing mechanism is available.”

Figure 7.11 View Provided by DynamicComponentQoS.jsp

153

7.3.3.1.9 View Provided by StaticSystemValidation.jsp

Figure 7.12 illustrates the view provided by StaticSystemValidation.jsp. This view

displays the results of the system QoS predicted by the QoS Composition Model. The

QoS values under the column of Expected System QoS are the user QoS requirements.

The predicted values are indicated under the column called Predicted System QoS. The

difference between the expected and predicted system QoS is shown under the column

called Deviation.

Figure 7.12 View Provided by StaticSystemValidation.jsp

7.3.3.1.10 View Provided by DynamicSystemValidation.jsp

Figure 7.13 illustrates the view provided by DynamicSystemValidation.jsp. This

view displays the results of dynamic (or real) system QoS computed by executing the

system, collecting the event traces and analyzing them. In the current prototype, the

principles of the event grammars and event traces are not implemented. The dynamic

QoS obtained using the current prototype contains simple pre-coded instrumentations that

empirically measure the values of the QoS parameters for the integrated system. The QoS

values under the column of Expected System QoS are the user QoS requirements. The

QoS values obtained by empirical testing are shown under the column called Dynamic

154

System QoS. The difference between the expected and dynamic system QoS is shown

under the column called Deviation.

Figure 7.13 View Provided by DynamicSystemValidation.jsp

Figure 7.14 View Provided by CompoenntDescription.jsp

155

7.3.3.1.11 View Provided by ComponentDescirption.jsp

Figures 7.14 and 7.15 illustrate the view provided by ComponentDescription.jsp.

This view displays the UMM specification for a component. The component can either be

an abstract component or a concrete component. The difference between the UMM

specification of an abstract component and that of a concrete component is discussed in

Chapter 3.

Figure 7.15 View Provided by ComponentDescription.jsp (Continued from Figure 7.14)

7.3.3.1.12 View Provided by UGDMKBGeneration.jsp

Figure 7.16 illustrates the view provided by UGDMKBGeneration.jsp. The view

displays a set of choices of different XML parsers to translate UGDM models from XML

format into Oracle database. In the current prototype, seven parsers are available:

156

Abstract Component Model Parser (for UMM Specification), AMDNF (Component

Level) Parser, AMDNF (Function/Interface Level) Parser, AMDNF Mapping Parser

(Component Level to Function/Interface Level), Component Interaction Parser, AMDNF

and CUCM Mapping Parser (Function/Interface Level) and Abstract Component

Interface Model Parser. Details about each model are in Chapter 4 and Chapter 5. The

option of Reset Banking UGDMKB refreshes the UGDMKB with the UGDM of the

banking domain in XML formats by the above parsers.

Figure 7.16 View Provided by UGDMKBGeneration.jsp

7.3.3.2 Web Tier

The Web Tier consists of Web components, which are the controllers in the MVC

architecture. The controllers are responsible for coordinating the model and the view. The

Web Tier in the USGI also consists of several proxy classes, which help the connection

between Web Components in this tier and Business Components in the Business Tier.

157

Legends

H: home.html 9: DetermineAdapterTypes.jsp
1: initiation.jsp 10 SelectConcreteComponents.jsp
2: usgi.jsp 11. DynamicComponentQoS.jsp
3: OrderWithoutNLP.jsp 12: AcquireAdapters.jsp
4: OrderWithNLP.jsp 13: StaticSystemValidation.jsp
5: UGDMKBGeneration.jsp 14: BuildSystem.jsp
6: Order.jsp 15: DynamicSystemValidation.jsp
7: AcquireConcreteComponents.jsp 16: Deploy.jsp
8: AvailableConcreteComponents.jsp 17: ComponentDescription.jsp

Figure 7.17 Flow between jsp Files in USGI Implementation

7.3.3.2.1 Web Components

The Web Components in the USGI prototype implementation are JSP pages.

Figure 7.17 shows the major JSP pages in the prototype and their interactions to present

the views in a logical way to users. In the view provided by Order.jsp, the users have the

choices of the automatic system generation or the manual system generation. These

choices make the biggest difference in the flow of control in the JSP pages.

� home.html: This is NOT a JSP page. This html page serves as the starting point of the

USGI. It automatically redirects the control to initiation.jsp.

Automatic
Generation

Manual

Generation

2

3

4

5

6 7 8 9

12

13 14 15 16

1

H
10

11

17

158

� initiation.jsp: This JSP page does not provide a view. The purpose of this JSP page is

to initialize a session for a user. Objects of OrderProcessorProxy,

SystemGeneratorProxy and UGDMKBGeneratorProxy are created and maintained in

the session bean to be used throughout a session. These proxies are the connections

between the Web Tier and the Business Tier. They are discussed in the next section.

� usgi.jsp: This JSP page provides the top-level choices available in the prototype:

System Generation without NLP, System Generation with NLP and UGDMKB

Generation.

� OrderWithoutNLP.jsp: This JSP page provides the starting interface to order a system

from the banking domain example without the natural language processing support. It

gathers information about an order in an order bean and passes the bean to Order.jsp.

� OrderWithNLP.jsp: This JSP page provides the starting interface to place an order for

a system in a natural-language-like format. It shows an example order and shows to

the users whether an order is understood by the system or not. It passes the natural-

language-like order to the NLP in the business tier via the NLPProxy. It passes the

order bean return from the NLP to Order.jsp.

� UGDMKBGeneration.jsp: This JSP page provides an access to a set of XML parsers

to parse information about a GDM in the XML format into an Oracle database. It

accesses the UGDMKBGenerator in the business tier via the

UGDMKBGeneratorProxy.

� Order.jsp: This JSP page accepts order beans from either OrderWithoutNLP.jsp or

OrderWithNLP.jsp and passes the order bean to the OrderProcessor in the business

tier via the OrderProcessorProxy. It displays information about a system

specification returned from the OrderProcessor and passes the system specification to

AcquireConcreComponents.jsp.

� AcquireConcreteComponents.jsp: This JSP page accepts the system specification

from Order.jsp and contacts the SystemGenerator in the Buiness Tier via the

SystemGeneratorProxy to obtain a list of concrete components for the required

abstract components indicated in the system specification. Then it passes the list of

concrete components to AvailableConcreteComponents.jsp.

159

� AvailableConcreteComponents.jsp: This JSP page provides the view of the lists of

concrete components that meets the requirements of the corresponding abstract

component. When the users click on the “Found” link, the page is forwarded to

SelectConcreteCompoennts.jsp.

� SelectConcreteComponents.jsp: This JSP page displays all the concrete components

for an abstract component and prompts the users to select the required number of

concrete components from the available concrete components.

� DynamicComponentQoS.jsp: This JSP page allows the dynamic testing of the QoS for

a concrete component to check if the advertised QoS is accurate or not. It compares

the results of the dynamic testing with the advertised values. If the dynamic testing

results are different from the advertised values, no corrective actions are possible in

the current prototype.

� DetermineAdapterTypes.jsp: When a set of concrete components are selected for

generating a DCS, this JSP page functions as an entry point to determine what kind of

adapters are needed if the selected concrete components are heterogeneous. It does so

by contacting the SystemGenerator in the Business Tier via the

SystemGeneratorProxy in this tier.

� AcquireAdapters.jsp: If any adapter is needed to bridge the heterogeneous concrete

components, this JSP page contacts the SystemGenerator in the Business Tier via the

SystemGeneratorProxy to get the necessary adapters.

� StaticSystemValidation.jsp: This JSP is the starting point for static system QoS

validation, which is done by using the QoS Composition Model through the

SystemGenerator in the Business Tier via the SystemGeneratorProxy. It displays the

static validation results.

� BuildSystem.jsp: This JSP page is the starting point for configuring a system through

the SystemGenerator in the Business Tier via the SystemGeneratorProxy. It displays

to the users whether the configuration is successful or not.

� DynamicSystemValidation.jsp: This JSP page is the starting point for the dynamic

validation of the system QoS and displays the validation results. It invokes the

SystemGenerator in the Business Tier via the SystemGeneratorProxy.

160

� Deploy.jsp: This JSP page displays the complete information about an integrated

system, including its order criteria, system specification, and static and dynamic QoS

validation value, etc.

� ComponentDescription.jsp: This JSP page provides a detailed view that describes the

UMM specification about an abstract component or a concrete component. The UMM

specification is described in Chapter 3.

7.3.3.2.2 Proxy Classes

The proxy classes serve as the connectors between the Web Tier and the Business

Tier in the USGI. There are four proxy classes in the USGI prototype implementation.

� UGDMKBGeneratorProxy: This proxy class connects UGDMKBGenerator.jsp in the

Web Tier with the UGDMKBGenerator in the Business Tier.

� OrderProcessorProxy: This proxy class connects Order.jsp in the Web Tier with the

OrderProcessor in the Business Tier.

� SystemGeneratorProxy: This proxy class connects many JSP pages in the Web Tier

with the SystemGenerator in the Business Tier. The JSP pages connected by this

proxy class include: AcquireConcreteComponents.jsp, DynamicComponentQoS.jsp,

DetermineAdapterTypes.jsp, AcquiredAdapters.jsp, StaticSystemValidation.jsp,

BuildSystem.jsp, DynamicSystemValidation.jsp.

� NLPProxy: This proxy class connects OrderWithNLP.jsp in the Web Tier with the

NLP in the Business Tier.

7.3.3.2.3 Managing the State of a Session

Every user needs to track the information associated with the user requests and

the associated responses. In the JSP pages, an http session object maintains JavaBeans

that are specific to a user. The following state information is maintained.

161

� Order Requirements: The order requirements for a system are captured in an

OrderBean and passed on to the OrderProcessor in the Business Tier via the

OrderProcessorProxy.

� System Specifications: The details of a system that can satisfy the order requirements

placed by a user include the system architecture ID at both component level and

function/interface level, the system critical use case model ID, expected system QoS,

expected component QoS and required abstract components. This information is

captured in a JavaBean named SystemSpecification.

� System Blueprints: The complete information about an integrated system consists of

the order information and the system specification for the system as well as the static

and dynamic system validation results for the system, and the deployment

information. All this information is captured in a JavaBean named SystemBlueprint.

7.3.3.3 Business Tier

The Business Tier consists of Business Components, which are a part of the Model

in the MVC architecture in the USGI prototype design. Business Components here refers

to standalone software units that provide services to components in other tiers or in the

same tier. The service provided could be a computational effort or an access to

underlying resources. Business Components can be remotely accessed using standard

communication protocols. The Business Components in the USGI prototype include

UGDMKBGenerator, OrderProcessor, NLP, SystemGenerator, URDS_Proxy, and

WrapperGlueGenerator_Proxy.

7.3.3.3.1 UGDMKBGenerator

Figure 7.18 shows the class diagram of the UGDMKBGenerator and the interface

it implements. The UGDMKBGenerator is invoked by the UGDMKBGeneratorProxy in

the Web Tier. The details of the UGDMKBGenerator and the associated interface are

provided below.

162

IUGDMKBGenerator: This remote interface publishes two methods.

� parse(): The purpose of this method is to translate a file in the XML

format, which contains a model in the UGDM for a DCS domain, into an

Oracle database.

� resetBankingUGDM(): The purpose of this method is to reset the banking

domain example in the Oracle database in case the information in the

database is corrupted.

UGDMKBGenerator: This class implements the remote interface IUGDMKBGenerator.

Currently the UGDMKBGenerator only implements part of the tasks outlined in Section

6.3.6. It only translates the models from the XML format, which is defined for each

model in Appendix I, into the database by a set of XML parsers. These XML parsers use

Apache’s DOM parser technology [APA03]. The XML parsers that are used by the

UGDMKBGenerator include:

� UMMSepcification_XMLParser: This parser translates a UMM specification of an

abstract component from the XML format into an Oracle database.

UGDMKBGenerator

+ UGDMKBGenerator() { constructor}
+ main(String[] args): void { static}

Figure 7.18 Class Diagram for UGDMKBGenerator

IUGDMKBGenerator

java.rmi.UnicastRemoteObject

IUGDMKBGenerator

+ parse(String fileName, String modelName): boolean { throws RemoteException}
+ resetBankingUGDM(): void { throws RemoteException}

java.rmi.Remote

163

� Architecture_Component_XMLParser: This parser translates an architecture

model in disjunctive normal form at component level from the XML format into

an Oracle database.

� Architecture_Interface_XMLParser: This parser translates an architecture model

in disjunctive normal form at function/interface level from the XML format into

an Oracle database.

� Map_Architectures_XMLParser: This parser translates an architecture model

mapping from the XML format into an Oracle database.

� Component_Interaction_XMLParser: This parser translates a component

interaction model from the XML format into an Oracle database.

� Map_Architecture_CUCM_XMLParser: This parser translates the mapping

between the architecture model in disjunctive normal form and the critical use

case model from the XML format into an Oracle database.

� AbstractComponentInterface_XMLParser: This parser translates an abstract

component interface model from the XML format into an Oracle database.

7.3.3.3.2 Order Processor

Figure 7.19 shows the class diagram of OrderProcessor and the interface it

implements. The OrderProcessor is invoked by the OrderProcessorProxy in the Web

Tier.

IOrderProcessor: This remote interface publishes one method.

� order(): The purpose of this method is to determine the system

specification according to the user requirements by querying the database

that stores the UGDM. Currently, there are two options for this method in

the prototype implementation for the banking domain example: order with

the natural language processing support and order without the natural

language processing support.

� Order_simulation(): This method has the same functionality as the one

above. The difference is that this method queries through local data

164

structures that simulate the functionality of the database that stores the

UGDM.

OrderProcessor: This class implements the interface IOrderProcessor. The

OrderProcessor implements the algorithm outlined in Section 3.7.8. The OrderProcessor

uses the UGDM in the Oracle database. It also uses the library of the QoS composition

and decomposition rules to derive the expected component QoS from the System QoS.

The QoS library for the banking domain example is implemented in the class

QCDM_Bank.

7.3.3.3.3 System Generator

Figure 7.20 shows the class diagram of the SystemGenerator and the interface it

implements. The SystemGenerator is invoked by the SystemGeneratorProxy in the Web

Tier.

ISystemGenerator: This remote interface publishes 15 methods.

� acquireConcreteComponents(): This method takes a system specification

as its input. The system specification contains a list of required abstract

OrderProcessor

+ OrderProcessor() { constructor}
+ main(String[] args): void { static}

Figure 7.19 Class Diagram for OrderProcessor

IOrderProcessor

java.rmi.UnicastRemoteObject

IOrderProcessor <<interface>>

+ order(Object orderCriteria, int option): Object { throws RemoteException}
+ order_simulation(Object orderCriteria, int option): Object { throws RemoteException}

java.rmi.Remote

165

components. This method searches for each required abstract component

through QueryManager of the URDS via the URDS_Proxy. It returns a

Hashtable containing one list of concrete components found for each

required abstract component. The keys for the Hashtable are the names of

the abstract components.

� acquireConcreteComponents_simulation(): This method has the same

functionality as the one above. However, instead of looking for the

concrete components through the URDS, it looks for the concrete

components in a local repository, which simulates the functionality of the

URDS.

SystemGenerator

- wrapperGlueGenerator: IWrapperGlueGenerator
- urds_proxy: IURDS_Proxy

+ SystemGenerator() { constructor}
+ main(String[] args): void { static}

java.rmi.UnicastRemoteObject ISystemGenerator

ISystemGenerator << interface>>

+ acquireConcreteComponents(SystemSpecification systemSpecification) : Hashtable { throws RemoteException}
+ acquireConcreteComponents_simulation(SystemSpecification systemSpecification) : Hashtable

{ throws RemoteException}
+ determineAdapterTypes(SystemBluePrint systemBluePrint) : ArrayList { throws RemoteException}
+ determineAdapterTypes_simulation(SystemBluePrint systemBluePrint) : ArrayList { throws RemoteException}
+ acquireAdapters(ArrayList adapterTypeList) : Hashtable { throws RemoteException}
+ acquireAdapters_simulation(ArrayList adapterTypeList) : Hashtable { throws RemoteException}
+ getStaticSystemQoS(SystemBluePrint systemBluePrint) : SystemQoS { throws RemoteException}
+ assembleSystem(SystemBluePrint systemBluePrint) : boolean { throws RemoteException}
+ assembleSystem_simulation(SystemBluePrint systemBluePrint) : boolean { throws RemoteException}
+ assembleSystem_simulation_ugdmkb(SystemBluePrint systemBluePrint) : boolean { throws RemoteException}
+ getDynamicSystemQoS(SystemBluePrint systemBluePrint) : SystemQoS { throws RemoteException}
+ getDynamicSystemQoS_simulation (SystemBluePrint systemBluePrint) : SystemQoS

{ throws RemoteException}
+ getDynamicComponentQoS(ConcreteComponent component) : ComponentQoS { throws RemoteException}
+ getDynamicComponentQoS_simulation (ConcreteComponent component) : ComponentQoS

{ throws RemoteException}
+ generateSystem(SystemBluePrint systemBluePrint) : SystemBluePrint { throws RemoteException}

Figure 7.20 Class Diagram for SystemGenerator

java.rmi.Remote

166

� determineAdapterTypes(): This method takes as its input a

SystemBluePrint which consists of the selected concrete components for

assembling a system. This method consults the UGDM in the database to

determine what kinds of adapters are needed for assembling the system.

� determineAdapterTypes_simulation(): This method has the same

functionality as the one above. However, instead of consulting the UGDM

in the database, it consults local data structures that simulate the

functionality of the database that stores the UGDM.

� acquireAdapters(): This method takes as its input a list of required

adapters and acquires them through the URDS. If the URDS can not find

an adapter, it sends the query for that adapter to the

WrapperGlueGenerator via the WrapperGlueGenerator_Proxy.

� acquireAdapters_simulation(): This method has the same functionality as

the one above. However, instead of looking for the adapters through the

URDS, it looks for the adapters in a local repository which simulates the

functionality of the URDS.

� getStaticSystemQoS(): This method takes as its input a SystemBlueprint

which consists of all the information necessary for assembling a system. It

calculates static system QoS by using QoS composition rules in the

QCDM_Bank library.

� assembleSystem(): This method takes as its input a SystemBlueprint which

consists of all the information necessary for assembling a system and

assembles the system by consulting the UGDM in the database.

� assembleSystem_simulation(): This method has the same functionality as

the one above. However, it does nothing but simply returns information to

indicate that the system was assembled successfully. This allows the

demonstration of the prototype without running the banking components.

� assembleSysem_simulation_ugdmkb(): This method has the same

functionality as the one above. However, instead of consulting the UGDM

167

in the database, it consults local data structures that simulate the

functionality of the database that stores the UGDM.

� getDynamicSystemQoS(): This method takes as its input a

SystemBlueprint. It dynamically calculates the system QoS using the

methods such as the event traces. In this prototype, the event traces are not

implemented. The dynamic system QoS is measured by the pre-coded

instructions.

� getDynamicSystemQoS_simulation(): This method has the same purpose

as the one above. The difference is that this method only simulates the

activity of dynamically getting the system QoS. The simulation is done

through the random number generation.

� getDynamicComponentQoS(): This method takes as its input a

ConcreteComponent. It dynamically calculates the component QoS using

methods such as event traces. In this prototype, the event traces are not

implemented. The dynamic component QoS is measured by the pre-coded

instructions.

� getDynamicComponentQoS_simulation(): This method has the same

purpose as the one above. The difference is that this method only

simulates the activity of dynamically getting the component QoS. The

simulation is done through the random number generation.

� generateSystem(): The purpose of this method is to generate a system

automatically. It implements the system generation process outlined in

Chapter 6. It achieves its purpose by a sequence of calls to other methods

defined in this interface.

SystemGenerator: This class implements the ISystemGenerator. The

SystemGenerator implements the algorithms outlined in Section 6.3.9. The

SystemGenerator uses the UGDM in the Oracle database. It also uses the library of the

QoS composition and decomposition rules to predict the static system QoS. The QoS

library for the banking domain example is implemented in the class QCDM_Bank.

168

7.3.3.3.4 URDS_Proxy

Figure 7.21 shows the class diagram of the URDS_Proxy and the interface it

implements. The URDS_Proxy is invoked by the SystemGenerator in the Business Tier.

The URDS_Proxy accesses the URDS already implemented in the UniFrame research.

IURDS_Proxy: This remote interface publishes two methods.

� searchConcreteComponents(): This method takes as its input an abstract

component. It prepares a QueryBean for the abstract component and sends

the query to the QueryManager of the URDS. It returns a list of concrete

components found for the abstract component.

� searchConcreteComponents_simulation(): This method has the same

function as the one above. However, instead of looking for the concrete

components through the URDS, it looks for concrete components in a

local repository which simulates the functionality of the URDS.

URDS_Proxy: This class implements the IURDS_Proxy. It accesses the URDS

through the interface published by the QueryManager in the URDS.

URDS_Proxy

- queryManager: IQueryManager

+ URDS_Proxy() { constructor} { throws RemoteException}
+ main(String[] args): void { static}

IURDS_Proxy

java.rmi.UnicastRemoteObject

IURDS_Proxy <<interface>>

+ searchConcreteComponents (AbstractComponent abstractComponent) : ArrayList { throws RemoteException}
+ searchConcreteComponents_simulation (AbstractComponent abstractComponent) : ArrayList
 { throws RemoteException}

Figure 7.21 Class Diagram for URDS_Proxy

java.rmi.Remote

169

7.3.3.3.5 Natural Language Processor

Figure 7.22 shows the class diagram for the Natural Language Processor (NLP)

and the interface it implements. The NLP is invoked by the NLP_Proxy in the Web Tier.

INLP: This remote interface publishes one method.

� order(): This method sends the natural-language-like system requirements

as specified in the argument to the natural language processing service. It

returns the system specification as an OrderBean.

NLP: This class implements the INLP. The NLP itself is a proxy that accesses the

natural language processing service created by the collaborators of the UniFrame

research at University of Alabama at Birmingham [LEE02a]. The natural language

processing service implemented for this prototype is for the banking domain example.

7.3.3.3.6 WrapperGlueGenerator_Proxy

Figure 7.23 shows the class diagram for the WrapperGlueGenerator_Proxy and

the interface it implements. The WrapperGlueGenerator_Proxy is invoked by the

SystemGenerator in the Business Tier. The WrapperGlueGenerator_Proxy accesses the

WrapperGlueGenerator being implemented by University of Alabama at Birmingham

[CAO02, ZHA02], a collaborator of the UniFrame research.

Figure 7.22 Class Diagram for NLP

INLP

java.rmi.UnicastRemoteObject

NLP

+ NLP() { constructor}
+ main(String[] args): void { static}

INLP <<interface>>

+ order(String orderString): Object { throws RemoteException}

java.rmi.Remote

170

IWrapperGlueGenerator_Proxy: This remote interface publishes one method.

� generateWrapperGlue(): This method takes as its argument an

AdapterType and forwards the request to the WrapperGlueGenerator to

generate the required adapter.

WrapperGlueGenerator_Proxy: IWrapperGlueGenerator_Proxy is implemented

by this class. It is a proxy to access the Wrapper and Glue Generator service being

implemented by our collaborator at University of Alabama at Birmingham [CAO02,

ZHA02].

7.3.3.4 Database Tier

The Database Tier is responsible for storing the persistent data in the USGI. The

persistent data in the USGI is the UGDM. The USGI maintains persistent data in an

Oracle database (version 8.1.7) which is a relational database. The data are stored in

database tables. These database tables store information about various models of the

UGDM. The creation and maintenance of the database tables are done by the

Figure 7.23 Class Diagram for WrapperGlueGenerator_Proxy

IWrapperGlueGenerator_Proxy

java.rmi.UnicastRemoteObject

WrapperGlueGenerator_Proxy

- wrapperGlueGeneraor: IWrapperGlueGenerator

+ WrapperGlueGenerator_Proxy() { constructor}
+ main(String[] args): void { static}

IWrapperGlueGenerator_Proxy <<interface>>

+ generateWrapperGlue(AdapterType addapterType): ConcreteComponent { throws RemoteException}

java.rmi.Remote

171

UGDMKBGenerator. The UGDM information in the database is used by the

OrderProcessor and the SystemGenerator in the USGI. The database is accessed and

updated through the JDBC technology.

7.3.3.4.1 Schemas for the Abstract Component Model

Figure 7.24 illustrates the schemas for the abstract component model in the

UGDM. The schemas consist of twelve tables: UMMSpecification, Algorithms,

RequiredInterfaces, ProvidedInterfaces, Technologies, ExpectedResources,

DesignPatterns, KnownUsages, Aliases, PreprocessingCollaborators,

PostprocessingCollaborators and QoSMetrics. Information about each abstract

component is stored in these twelve tables. The information reflects the UMM

specification (details are in Chapter 3) of a component in the UniFrame Approach.

7.3.3.4.1.1 UMMSpecification Table

The UMMSpecification table holds entries from a UMM specification that has no

more than one value for each abstract component. The columns in this table include those

that can identify an abstract component, such as ComponentName, DomainName and

SystemName, and those that are attributes of an abstract component, such as, Description,

HostID, Version, Author, CreationDate, Validity, Atomicity, Registration, Model,

Purpose, Complexity, Mobility, Security, FaultTolerance, QoSLevel, Cost and

QualityLevel. Each abstract component has exactly one entry in this table. An example of

a record of this table is <’AccountDatabase’ , ‘Banking’ , ‘Bank’ , ‘Provide an account

database service.’ , ‘N/A’ , ‘version 1.0’ , ‘N/A’ , ‘N/A’ , ‘N/A’ , ‘Yes’ , ‘N/A, ‘N/A’ , ‘Serve

as an account database.’ , ‘N/A’ , ‘No’ , ‘L0’ , ‘L0’ , ‘N/A’ , ‘N/A’ , ‘N/A’>. The first three

entries in this example are the component name, domain name and system name

respectively. The rest are the values for the attributes stated above respectively.

172

Schema for UMMSecification
Column Name Column Type
ComponentName VARCHAR
DomainName VARCHAR
SystemName VARCHAR
Description VARCHAR
HostID VARCHAR
Version VARCHAR
Author VARCHAR
CreatingDate VARCHAR
Validity VARCHAR
Atomicity VARCHAR
Registration VARCHAR
Model VARCHAR
Purpose VARCHAR
Complexity VARCHAR
Mobility VARCHAR
Security VARCHAR
FaultTolerance VARCHAR
QoSLevel VARCHAR
Cost VARCHAR
QualityLevel VARCHAR

Schema for Algorithms
Column Name Column Type
ComponentName VARCHAR
DomainName VARCHAR
SystemName VARCHAR
Algorithm VARCHAR

Schema for RequiredInterfaces
Column Name Column Type
ComponentName VARCHAR
DomainName VARCHAR
SystemName VARCHAR
Interface VARCHAR

Schema for ProvidedInterfaces
Column Name Column Type
ComponentName VARCHAR
DomainName VARCHAR
SystemName VARCHAR
Interface VARCHAR

Schema for Technologies
Column Name Column Type
ComponentName VARCHAR
DomainName VARCHAR
SystemName VARCHAR
Technology VARCHAR

Schema for ExpectedResources
Column Name Column Type
ComponentName VARCHAR
DomainName VARCHAR
SystemName VARCHAR
ExpectedResource VARCHAR

Schema for DesignPatterns
Column Name Column Type
ComponentName VARCHAR
DomainName VARCHAR
SystemName VARCHAR
Pattern VARCHAR

Schema for KnownUsages
Column Name Column Type
ComponentName VARCHAR
DomainName VARCHAR
SystemName VARCHAR
Usage VARCHAR

Schema for Aliases
Column Name Column Type
ComponentName VARCHAR
DomainName VARCHAR
SystemName VARCHAR
Alias VARCHAR

Schema for PreprocessingCollaborators
Column Name Column Type
ComponentName VARCHAR
DomainName VARCHAR
SystemName VARCHAR
Collaborator VARCHAR

Schema for PostprocessingCollaborators
Column Name Column Type
ComponentName VARCHAR
DomainName VARCHAR
SystemName VARCHAR
Collaborator VARCHAR

Schema for QoSMetrics
Column Name Column Type
ComponentName VARCHAR
DomainName VARCHAR
SystemName VARCHAR
Metric VARCHAR

Figure 7.24 Schemas for Abstract Component Model in the UGDM

173

7.3.3.4.1.2 Algorithms Table

The Algorithms table holds the possible algorithms that may be used to implement

the concrete components for an abstract component. The columns in this table include

those that can identify an abstract component, such as ComponentName, DomainName

and SysemName, and another one for the name of a possible algorithm. One abstract

component can have multiple entries in this table. An example of a record for this table is

<’AccountDatabase’ , ‘Banking’ , ‘Bank’ , ‘Merge Sort’>. The first three entries in this

example identify the abstract component and the last entry indicates that the Merge Sort

algorithm can be used to implement the concrete components for this abstract component.

7.3.3.4.1.3 RequiredInterfaces Table

The RequiredInterfaces table holds the required interfaces for an abstract

component. The columns in this table include those that can identify an abstract

component, such as ComponentName, DomainName and SysemName, and another one

for the name of a required interface. One abstract component can have multiple entries in

this table. An example of a record for this table is <’DeluxeTransactionServer’ ,

‘Banking’ , ‘Bank’ , ‘ IAccountDatabaseCase1’>. The first three entries in this example

identify the abstract component and the last entry indicates that the interface

IAcountDatabaseCase1 is required by this abstract component.

7.3.3.4.1.4 ProvidedInterfaces Table

The ProvidedInterfaces table holds the provided interfaces for an abstract

component. The columns in this table include those that can identify an abstract

component, such as ComponentName, DomainName and SysemName, and another one

for the name of a provided interface. One abstract component can have multiple entries in

this table. An example of a record for this table is <’AccountDatabase’ , ‘Banking’ ,

‘Bank’ , ‘ IAccountDatabaseCase1’>. The first three entries in this example identify the

174

abstract component and the last entry indicates that the interface IAcountDatabaseCase1

is provided by this abstract component.

7.3.3.4.1.5 Techonologies Table

The Technologies table holds the possible technologies that may be used to

implement the concrete components for an abstract component. The columns in this table

include those that can identify an abstract component, such as ComponentName,

DomainName and SysemName, and another one for the name of the possible technology

that can be used to implement the abstract component. One abstract component can have

multiple entries in this table. An example of a record for this table is

<’AccountDatabase’ , ‘Banking’ , ‘Bank’ , ‘Java RMI’>. The first three entries in this

example identify the abstract component and the last entry indicates that Java RMI may

be used to implement the concrete components for this abstract component.

7.3.3.4.1.6 ExpectedResources Table

The ExpectedResources table holds the possible resources that may be required by

the concrete components of an abstract component. The columns in this table include

those that can identify an abstract component, such as ComponentName, DomainName

and SysemName, and another one for the name of the possible resource. One abstract

component can have multiple entries in this table. An example of a record for this table is

<’AccountDatabase’ , ‘Banking’ , ‘Bank’ , ‘Memory’>. The first three entries in this

example identify the abstract component and the last entry indicates that the memory is a

possible required resource by the concrete components for this abstract component.

7.3.3.4.1.7 DesignPatterns Table

The DesignPatterns table holds the possible design patterns that may be applied

to implement the concrete components for an abstract component. The columns in this

175

table include those that can identify an abstract component, such as ComponentName,

DomainName and SysemName, and another one for the name of the possible design

pattern. One abstract component can have multiple entries in this table. An example of a

record for this table is <’AccountDatabase’ , ‘Banking’ , ‘Bank’ , ‘Factory Pattern’>. The

first three entries in this example identify the abstract component and the last one

indicates that the factory pattern may be used to implement the concrete components for

the abstract component.

7.3.3.4.1.8 KnownUsages Table

The KnownUsages table holds the known application of an abstract component.

The columns in this table include those that can identify an abstract component, such as

ComponentName, DomainName and SysemName, and another one for the name of the

area that the abstract component is used. One abstract component can have multiple

entries in this table. An example of a record for this table is <’AccountDatabase’ ,

‘Banking’ , ‘Bank’ , ‘Finance’>. The first three entries in this example identify the abstract

component and the last one indicates that this abstract component has been used in the

area of finance.

7.3.3.4.1.9 Aliases Table

The Aliases table holds the possible aliases of an abstract component. The

columns in this table include those that can identify an abstract component, such as

ComponentName, DomainName and SysemName, and another one for the name of a

possible alias for the abstract component. One abstract component can have multiple

entries in this table. An example of a record for this table is <’AccountDatabase’ ,

‘Banking’ , ‘Bank’ , ‘AccountRepository’>. The first three entries in this example identify

the abstract component and the last one indicates that AccountRepository is another name

for this abstract component.

176

7.3.3.4.1.10 PreprocessingCollaborators Table

The PreprocessingCollaborators table holds the preprocessing collaborators of an

abstract component. The columns in this table include those that can identify an abstract

component, such as ComponentName, DomainName and SysemName, and another one

for the name of a preprocessing collaborator. One abstract component can have multiple

entries in this table. An example of a record for this table is <’AccountDatabase’ ,

‘Banking’ , ‘Bank’ , ‘DeluxeTransactionServer’>. The first three entries in this example

identify the abstract component and the last one indicates that DeluxeTransactionServer

is a preprocessing collaborator of this abstract component.

7.3.3.4.1.11 PostprocessingCollaborators Table

The PostprocessingCollaborators table holds the postprocessing collaborators of

an abstract component. The columns in this table include those that can identify an

abstract component, such as ComponentName, DomainName and SysemName, and

another one for the name of a postprocessing collaborator. One abstract component can

have multiple entries in this table. An example of a record for this table is

<’DeluxeTransactionServer’ , ‘Banking’ , ‘Bank’ , ‘AccountDatabase’>. The first three

entries in this example identify the abstract component and the last one indicates that

AccountDatabase is a postprocessing collaborator of this abstract component.

7.3.3.4.1.12 QoSMetrics Table

The QoSMetrics table holds the QoS metrics of an abstract component that must

be validated when implemented. The columns in this table include those that can identify

an abstract component, such as ComponentName, DomainName and SysemName, and

another one for the name of a QoS metric. One abstract component can have multiple

entries in this table. An example of a record for this table is <’AccountDatabase’ ,

‘Banking’ , ‘Bank’ , ‘ throughput’>. The first three entries in this example identify the

abstract component and the last one indicates that throughput is a QoS parameter that

177

must be validated when the concrete components of the abstract component are

implemented.

7.3.3.4.2 Schema for the AMDNF at Component Level

The schema for the Architecture Model in Disjunctive Normal Form (AMDNF) at

Component Level is shown in Figure 7.25 as the database table ArchitectureComponent.

The columns in this table include SystemName, CaseName and ComponentName.

SystemName and CaseName together identify a case in the AMDNF at component level

in the UGDM. The ComponentName is the entry for a component that constitutes the

case. Thus each case can have multiple entries in this table. An example of a record for

Schema for ArchitectureComponent
Column Name Column Type
SystemName VARCHAR
CaseName VARCHAR
ComponentName VARCHAR

Schema for ArchitectureInterface
Column Name Column Type
SystemName VARCHAR
CaseName VARCHAR
ComponentName VARCHAR
ComponentSubcase VARCHAR

Schema for MapArchitectures
Column Name Column Type
SystemName VARCHAR
CaseNameFrom VARCHAR
CaseNameTo VARCHAR

Schema for ComponentInteraction
Column Name Column Type
SystemName VARCHAR
Initiator VARCHAR
Responder VARCHAR

Schema for MapArchitectureCUCM
Column Name Column Type
SystemName VARCHAR
CaseNameFrom VARCHAR
CaseNameTo VARCHAR

Schema for AbstractComponentInterface
Column Name Column Type
DomainName VARCHAR
SystemName VARCHAR
ComponentName VARCHAR
ComponentSubcase VARCHAR
InterfaceType VARCHAR
InterfaceName VARCHAR
InterfaceSubcase VARCHAR

Figure 7.25 Schemas for Other Models in the UGDM

178

this table is <’Bank’ , ‘BankCase1’ , ‘CashierTerminal’>. This example indicates that the

component CashierTerminal is part of the case BankCase1 of the Bank system.

7.3.3.4.3 Schema for the AMDNF at Function/Interface Level

The schema for the Architecture Model in Disjunctive Normal Form (AMDNF) at

Function/Inerface Level is shown in Figure 7.25 as the database table

ArchitectureInterface. The columns in this table include SystemName, CaseName,

ComponentName and ComponentSubcase. SystemName and CaseName together identify

a case in the AMDNF in the UGDM. The ComponentName is the entry for a component

that constitutes the case. The ComponentSubcase reveals the special information about

the interfaces of the component, such as the communication patterns. Each case can have

multiple entries in this table. However, for each { SystemName, CaseName,

ComponentName} triple, there is only one entry. An example of a record for this table is

<’Bank’ , ‘BankCase1_1’ , ‘CashierTerminal’ , ‘CashierTerminalCase1’>. This example

indicates that the component CashierTerminal is part of the case BankCase1_1 of the

Bank system and the CashierTerminalCase1 represents the interfaces of the

CashierTerminal.

7.3.3.4.4 Schema for the Architecture Model Mapping

The schema for the Architecture Model Mapping is shown in Figure 7.25 as the

database table MapArchitectures. The columns in this table include SystemName,

CaseNameFrom and CaseNameTo. SystemName identifies a system. The

CaseNameFrom indicates a case in the Architecture Model in Disjunctive Normal Form

(AMDNF) at the component level. The CaseNameTo indicates a case in the AMDNF at

the function/interface level. The mapping is from CaseNameFrom to CaseNameTo. Each

{ SystemName, CaseNameFrom} pair can have only one entry in the database table. The

mapping is unidirectional. An example of a record for this table is <’Bank’ , ‘BankCase1’ ,

‘BankCase1_1’>. This example indicates that for the Bank system, BankCase1 (a case in

179

the AMDNF at the component level) is mapped to BankCase1_1 (a case in the AMDNF

at the function/interface level).

7.3.3.4.5 Schema for Component Interaction Model

The schema for the Component Interaction Model is shown in Figure 7.25 as the

database table ComponentInteraction. The columns in this table include SystemName,

Initiator and Responder. SystemName identifies a system. The Initiator is the entry for

the abstract component that initiates an interaction. The Responder is the entry for the

abstract component that responds to the Initiator. For each Initiator, there can be multiple

entries in this table. For each Responder, there can also be multiple entries in the table. If

two components in an interaction are peer-to-peer, then there should be two entries in the

database table for this kind of interaction. An example of a record for this table is

<’Bank’ , ‘DeluxeTransactionServer’ , ‘AccountDatabase’>. This example indicates that

in the Bank system, for the interaction between DeluxeTransactionServer and

AccountDatabase, the former component is the initiator and the latter component is the

responder.

7.3.3.4.6 Schema for Abstract Component Interface Model

The schema for the Abstract Component Interface Model is shown in Figure 7.25

as the database table AbstractComponentInterface. The columns in this table include

DomainName, SystemName, ComponentName, ComponentSubcase, InterfaceType,

InterfaceName and InterfaceSubcase. DomainName, SystemName, ComponentName and

ComponentSubcase together identify an abstract component at the function/interface

level. InterfaceName and InterfaceSubcase identify an interface. The InterfaceType

indicates the type of the interface in the entries of InterfaceName and InterfaceSubcase.

The value of InterfaceType is either Required or Provided. For each abstract component

at function/interface level, there can be multiple entries in this table. An example of a

record for this table is <’Banking’ , ’Bank’ , ‘AccountDatabase’ ,

180

‘AccountDatabaseCase1’ , ‘Provided’ , ‘ IAccountDatabase’ , ‘ IAccountDatabaseCase1’>.

The first four entries in this example identify the abstract component. The last two entries

identify an interface and the fifth entry indicates that this interface is a provided interface

of the component.

7.3.3.4.7 Schema for AMDNF and CUCM Mapping

The schema for the Architecture Model in Disjunctive Normal Form (AMDNF)

and Critical Use Case Model (CUCM) Mapping at the function/interface level is shown

in Figure 7.25 as the database table MapArchitectureCUCM. The columns in this table

include SystemName, CaseNameFrom and CaseNameTo. SystemName identifies a

system. The CaseNameFrom is the entry for a case in the AMDNF at function/interface

level. CaseNameTo is the entry for a case in the Critical Use Case Model (CUCM) at

function/interface level. Each { SystemName, CaseNameFrom} pair can have only one

entry in the table. An example of a record for this table is <’Bank’ , ‘BankCase1_1’ ,

‘CriticalUseCaseModel3’>. This example indicates that in the Bank system,

BankCase1_1 (a case in the AMDNF at function/interface level) is mapped to

CriticalUseCaseModel3 (a case in the CUCM at the function/interface level).

7.3.4 Experimental Results

This section provides the initial experimental results of using the USGPF to order

simple bank DCS from the banking domain example developed in Chapter 5. There are

two ordering schemes designed for this bank DCS family, one with the tabular ordering

language and the other one with the natural-language-like ordering language.

7.3.4.1 Ordering Scheme with Tabular Ordering Language

The tabular ordering language designed for the banking domain example is shown

in Table 5.39. The experiment was done with the following ordering criteria: 1) Bank

181

Type: Advanced Bank; 2) User Terminal (copy number): ATM (1 copy), Cashier

Terminal (1 copy); 4) System QoS: throughput > 700 operations/second, end to end delay

< 1500 microseconds. After placing the order, the OrderProcessor returned the following

system specification:

System Name: Bank
Architecture ID (Component Level): BankCase1
Architecture ID (Interface Level): BankCase1_1
Critical Use Case Model ID: CriticalUseCaseModel3
Expected System QoS:

Throughput (operations/second): 700.0
End to end delay (microsecond): 1500.0

Expected Component QoS:
EconomicTransactionServer:

transferMoney/throughput (operations/second): > 700.0 microsecond
transferMoney/endToEndDelay (microsecond): < 1500.0 operations/second
depositMoney/throughput (operations/second): > 700.0 microsecond
depositMoney/endToEndDelay (microsecond): <1500 operations/second
withdrawMoney/throughput (operations/second): > 700.0 microsecond
withdrawMoney/endToEndDelay (microsecond): < 1500.0 operations/second

…
Required Abstract Components: (Component Name/Component Subcase/Copy Number)

ATM/ATMCase1/1
CashierTerminal/CashierTerminalCase1/1
CashierValidationServer/CashierValidationServerCase1/1
CustomerValidationSever/CustomerValidationServerCase1/1
TransactionServerManager/TransactionServerMangerCase1/1
EconomicTransactionServer/EconomicTransactionServerCase1/1

The above system specification defines a system architecture that meets the

ordering requirements including the required abstract components, the expected system

QoS and the expected component QoS derived from the expected system QoS by the QoS

decomposition rules.

The next step is to generate the system based on this system specification. The

experiment was done with the option, Generate System (Manual), in order to interact

with the system generation process. The system specification was sent to the

SystemGenerator. The SystemGenerator firstly found the following concrete components

for the required abstract components via the URDS (the component ID for each concrete

component is listed):

182

ATM/ATMCase1:
1) magellan.cs.iupui.edu:9000/ATM
2) raleigh.cs.iupui.edu:9000/ATM
3) columnbus.cs.iupui.edu:9000/ATM

CashierTerminal/CashierTerminalCase1:
1) magellan.cs.iupui.edu:9000/ CashierTerminal
2) raleigh.cs.iupui.edu:9000/ CashierTerminal
3) columnbus.cs.iupui.edu:9000/ CashierTerminal

CashierValidationServer/CashierValidationServerCase1:
1) magellan.cs.iupui.edu:9000/ CashierValidationServer
2) raleigh.cs.iupui.edu:9000/ CashierValidationServer
3) columnbus.cs.iupui.edu:9000/ CashierValidationServer
4) http://134.68.140.142:9000/CashierValidationServer

CustomerValidationServer/CustomerValidationServerCase1
1) magellan.cs.iupui.edu:9000/ CustomerValidationServer
2) raleigh.cs.iupui.edu:9000/ CustomerValidationServer
3) columnbus.cs.iupui.edu:9000/ CustomerValidationServer

TransactionServerManager/TransactionServerManagerCase1:
1) magellan.cs.iupui.edu:9000/ TransactionServerManager
2) raleigh.cs.iupui.edu:9000/ TransactionServerManager
3) columnbus.cs.iupui.edu:9000/ TransactionServerManager

EconomicTransactionServer/EconomicTransactionServerCase1:
1) magellan.cs.iupui.edu:9000/ EconomicTransactionServer
2) raleigh.cs.iupui.edu:9000/ EconomicTransactionServer
3) columnbus.cs.iupui.edu:9000/ EconomicTransactionServer

The concrete components found above are implemented in Java RMI, except

http://134.68.140.142:9000/CashierValidationServer (shown in the italic font in the

above list) which was implemented in .NET. In this experiment, the following concrete

components including the component in .NET were selected to generate a bank system:

magellan.cs.iupui.edu:9000/ATM
magellan.cs.iupui.edu:9000/ CashierTerminal
http://134.68.140.142:9000/CashierValidationServer
raleigh.cs.iupui.edu:9000/ CustomerValidationServer
columnbus.cs.iupui.edu:9000/ TransactionServerManager
columnbus.cs.iupui.edu:9000/ EconomicTransactionServer

The dynamic component QoS for each component was tested and compared with

its advertised values. The deviations between the values were within 10%. The following

is a typical testing result for magellan.cs.iupui.edu:9000/ CashierTerminal:

183

 Function Name/QoS Parameter: Advertised QoS Dynamic QoS Deviation

transferMoney/throughput (operations/second): 3198.47 3307.86 109.39
transferMoney/endToEndDelay (microsecond): 312.65 302.31 -10.34
depositMoney/throughput (operations/second): 3303.34 3417.12 113.78
depositMoney/endToEndDelay (microsecond): 302.72 292.64 -10.08
withdrawMoney/throughput (operations/second): 3513.33 3634.34 121.01
withdrawMoney/endToEndDelay (microsecond): 284.63 275.15 -9.48

Since the selected concrete components were heterogeneous, the

SystemGenerator determined that the following adapter type (defined in Chapter 6) was

required:

Bridge Type: Java RMI - .NET
Preprocessing Component: CashierTerminal/CashierTerminalCase1
Postprocessing Component: CashierValidationServer/CashierValidationServerCase1
Preprocessing Component Model: Java RMI
Postprocessing Component Model: .NET

In the next step, the SystemGenerator acquired the necessary adapter via the

URDS. The following adapter was found:

134.68.140.142:2400/CashierValidationServerAdaper. Then, the USGI statically

validated the possible system by deriving the predicted system QoS from the selected

concrete components based on the QoS composition rules, and compared the values with

the expected system QoS. The result is listed below:

 QoS Parameter: Expected System QoS Predicted System QoS Deviation
throughput (operations/second): 700.00 1524.88 824.88
endToEndDelay (microsecond): 1500.00 655.79 -844.21

As shown above, the predicted system QoS met the expected system QoS. Thus,

the USGI configured the system with the selected concrete components and the required

adapter. After successful system assembly, the USGI validated the integrated system

dynamically for the real system QoS. The result is shown below:

 QoS Parameter: Expected System QoS Predicted System QoS Deviation
throughput (operations/second): 700.00 1186.00 486.00
endToEndDelay (microsecond): 1500.00 843.00 -657.00

184

The above dynamic system QoS testing result demonstrated that the integrated

system met the expected system QoS. Thus the ordering requirements were fulfilled and

the system was ready to be deployed.

There are many possible combinations to integrate a bank system from the

concrete components found above. Some of these combinations may not generate

systems that can meet the ordering requirements (the system QoS requirements). These

combinations are eliminated and the best system is returned from the rest of feasible

combinations during the automatic system generation, which has not been implemented

yet in the prototype.

7.3.4.2 Ordering Scheme with Natural-language-like Ordering Language

The experiment for this ordering scheme was done with the following natural-

language-like order, “Generate a bank system with 1 ATM and 1 cashier terminal. The

turn around time should be less than 1500 microseconds, and the throughput must be

greater than 700 operations/second”. These system requirements are compatible with the

one used in the previous section. When placing the order, this natural-language-like

statement was processed by a natural language processor into structured ordering

requirements which ware sent to the OrderProcessor. The OrderProcessor returned the

same system specification as the one listed in the previous section. The rest of the system

generation process is exactly the same as the ordering scheme with the tabular ordering

language and is not repeated here.

This chapter describes in detail the design and implementation of a USGI

prototype using Java technology. The prototype implementation demonstrates the proper

design of the USGI architecture and various algorithms associated with the USGI. The

prototype implementation also demonstrates the fulfillment of the objectives outlined in

Chapter 1 for the USGPF. The next chapter will conclude this thesis with future work and

a summary.

185

8. CONCLUSION

This thesis presented the UniFrame System-Level Generative Programming

Framework (USGPF) for the purpose of automatic generation of DCS from DCS families

by seamlessly integrating heterogeneous geographically dispersed software components.

Section 8.1 presents an overview of the features of the USGPF followed by an overview

of the contributions of this work. Section 8.2 presents the possible future enhancements

to the USGPF. Section 8.3 concludes this thesis with a summation.

8.1 Outcome of the Study

The software solutions for the future DCS will require automatic or semi-

automatic integration of software components, while abiding by the QoS constraints

advertised by each component and the QoS requirements of the system. This thesis

describes the system-level generative programming of the UniFrame Approach that

allows an effective and efficient assembly of heterogeneous and distributed software

components to create a DCS from a family of DCS specifications. The result of using the

UniFrame and the associated tools (such as the USGPF) leads to the automation of DCS

production while meeting both the functional and non-functional requirements of the

DCS. The USGPF and its effectiveness are demonstrated via a comprehensive banking

domain example.

There are many features of the USGPF proposed in this thesis. These are:

� The USGPF has built-in QoS support.

� The UGDM captures the common and variable properties of a DCS

family, such as the component interactions, the communication patterns,

and the QoS composition and decomposition models.

186

� The UGDP is a use-case driven, architecture-centric, iterative and

incremental process.

� In the USGI, the application engineering process is guarded by the QoS in

order to create QoS-aware DCS.

� A dynamic testing of the component QoS ensures the component meets its

advertised component QoS.

� Double validations are designed to ensure that the QoS requirements are

met during the system generation. The double validations include static

and dynamic system QoS validations.

� A general-purpose system generation framework separates the concerns of

the system generation logics from the domain dependent knowledge. The

separation of the UGDM from the system generator and the separation of

the concrete components from the system generator by the URDS are the

key designs to achieve this feature. This feature allows more flexibility

and maintainability.

The contributions of this thesis are:

� Definition of the UniFrame Generative Domain Model (UGDM). The

UGDM has an inherent consideration of the QoS requirements to assist the

need of developing QoS-aware DCS.

� Extension and enhancement of the work by [VAN02, VAR02] to create of

the UniFrame Domain Specific Language (UDSL) to document various

models in the UGDM in an informal fashion.

� Creation of the UniFrame UGDM Development Process (UGDP) to

formulate a UGDM in assisting the development of a DCS family. The

UGDP has a built-in support to integrate QoS into the UGDM.

� Development of a platform independent UniFrame System Generation

Infrastructure (USGI) for efficiently generating QoS-aware DCS by

seamlessly integrating heterogeneous distributed software components.

� Implementation of a prototype for the USGI based on the J2EETM model.

� Validation of the USGPF by a detailed case study.

187

8.2 Future Work

Several future extensions to this research on the USGPF can be done. A few of

these are discussed below.

8.2.1 Future Work on the UGDM

Following enhancements to the UGDM are possible in the future:

� The evolution of the UDSL to be more comprehensive. For example,

developing a set of UDSL expressions to describe the event grammars

[AUG95, AUG97] to dynamically measure and validate the QoS

parameters in the UniFrame.

� The formalization of the UGDM representation. Currently the UGDM is

documented informally using the UDSL developed in this work. This

UGDM representation is then transformed into the XML format. Future

research work in this front will include the formal representation of the

UGDM using TLG [BRY00, BRY02, BRY02a].

8.2.2 Future Work on the UGDP

Currently the UGDP is not automated. The only tools created are a set of XML

parsers which can automatically input the UGDM from the XML format into an Oracle

database. The future work on the UGDP includes both the refinement and the automation

of the process.

The Generic Modeling Environment (GME) [GME] developed by Vanderbilt

University is an excellent tool that can be used to assist the UGDP. The GME is a

configurable toolkit for creating domain-specific modeling and program synthesis

environments. The configuration is accomplished through meta-models which specify the

modeling paradigm (modeling language) of the application domain. The modeling

paradigm contains all the syntactic, semantic, and presentation information regarding the

domain; which concepts will be used to construct models, what relationships may exist

188

among those concepts, how the concepts may be organized and viewed by the modeler,

and rules governing the construction of models. The modeling paradigm defines the

family of models that can be created using the resultant modeling environment.

There are several steps involved in using the GME to model the UGDM. First, a meta-

model is created to describe the possible relationship (such as or and alternative of the

feature description, see Chapter 4) and constraints (such as require, reject and

mutual_require of the diagram constraint, see Chapter 4) that are used by the UGDM.

Second, an interpreter is written to translate any specific models created based on the

meta-model into the XML format defined for the models in the UGDM. The interpreter

implements the normalization and expansion rules and the constraint checking. It is

written in C++ with Visual Studio 6.0. Finally, with the availability of a meta-model and

an associated interpreter, a specific model for the banking domain example is created and

interpreted into XML.

Figure 8.1 Example of Generic Modeling Environment

189

Table 8.1 AMDNF in the XML format Created by the GME Interpreter

<?xml ver si on=' 1. 0' encodi ng=" ut f - 8" ?>
<! - - gener at ed aut omat i cal l y by f eat ur e met amodel i nt er pr et er
 @2003/ 3/ 21, 16: 49- - >
 <ar chi t ect ur e_component cont ai nment =" XOR" sel f I sMandat or y=" TRUE" >
 <syst em_name>Bank</ syst em_name>
 <case cont ai nment =" AND" sel f I sMandat or y=" FALSE" >
 <component sel f I sMandat or y=" TRUE" >ATM</ component >
 <component sel f I sMandat or y=" TRUE" >Cust omer Val i dat i onSer ver </ component >
 <component sel f I sMandat or y=" TRUE" >Tr ansact i onSer ver Manager </ component >
 <component sel f I sMandat or y=" TRUE" >Cashi er Ter mi nal </ component >
 <component sel f I sMandat or y=" TRUE" >Cashi er Val i dat i onSer ver </ component >
 <component sel f I sMandat or y=" TRUE" >Economi cTr ansact i onSer ver </ component >
 </ case>
 <case cont ai nment =" AND" sel f I sMandat or y=" FALSE" >
 <component sel f I sMandat or y=" TRUE" >ATM</ component >
 <component sel f I sMandat or y=" TRUE" >Cust omer Val i dat i onSer ver </ component >
 <component sel f I sMandat or y=" TRUE" >Cashi er Ter mi nal </ component >
 <component sel f I sMandat or y=" TRUE" >Cashi er Val i dat i onSer ver </ component >
 <component sel f I sMandat or y=" TRUE" >Tr ansact i onSer ver Manager </ component >
 <component sel f I sMandat or y=" TRUE" >Del uxeTr ansact i onSer ver </ component >
 <component sel f I sMandat or y=" TRUE" >Account Dat abase</ component >
 </ case>
 <case cont ai nment =" AND" sel f I sMandat or y=" FALSE" >
 <component sel f I sMandat or y=" TRUE" >Cashi er Ter mi nal </ component >
 <component sel f I sMandat or y=" TRUE" >Cashi er Val i dat i onSer ver </ component >
 <component sel f I sMandat or y=" TRUE" >Tr ansact i onSer ver Manager </ component >
 <component sel f I sMandat or y=" TRUE" >Economi cTr ansact i onSer ver </ component >
 </ case>
 <case cont ai nment =" AND" sel f I sMandat or y=" FALSE" >
 <component sel f I sMandat or y=" TRUE" >Cashi er Ter mi nal </ component >
 <component sel f I sMandat or y=" TRUE" >Cashi er Val i dat i onSer ver </ component >
 <component sel f I sMandat or y=" TRUE" >Tr ansact i onSer ver Manager </ component >
 <component sel f I sMandat or y=" TRUE" >Del uxeTr ansact i onSer ver </ component >
 <component sel f I sMandat or y=" TRUE" >Account Dat abase</ component >
 </ case>
 </ ar chi t ect ur e_component >

Here is a brief example that indicates the use of the GME in the UGDP. This

example has been developed as a joint effort with Fei Cao [CAO03], another researcher

in the UniFrame project. The example is about modeling the Architecture Model in

Hierarchical Form (AMHF) of the UGDM for the banking domain example, then

deriving the Architecture Model in Disjunctive Normal Form (AMDNF) at component

level in the XML format. Figure 8.1 shows the AMHF at the component level. At the

lower-right corner of Figure 8.1 shows the interface to specify the relationship of the

node under focus (TransactionSubsystem in the figure) with its child-nodes in the

environment. The dashed lines in the figure denote the various kinds of dependencies or

constraints to be enforced between feature nodes. In this example, the XML created by

the GME (shown in Table 8.1) is completely compatible with the format needed by the

190

corresponding XML parser (shown in Appendix H) except that the case name for each

case is not assigned although the interpreter can be written to do so easily. For details of

how to use the GME to do the modeling, see the tutorial of the GME [GME].

8.2.3 Future Work on the USGI Architecture

Currently, the USGI architecture does not provide any modules to assist a

customized development of a DCS and there is no support for integrating user-supplied

proprietary components. These features might be necessary as the UGDM might not

capture all the possible details in a domain, and as markets usually change constantly

over time, the new requirements may also come up. So, addition of these features is

another avenue for the future work.

8.2.4 Future Work on the USGI Prototype

The future work on the USGI prototype involves more comprehensive and

complete implementation of the USGI architecture. Many implementational strategies

can be applied to enhance the prototype at an application level and make the

implementation more scalable, fault tolerance, maintainable, interoperable and secure.

Below a summary of these strategies is provided.

8.2.4.1 Workload Management

The prototype implementation of the USGI design supports various services like

Order Processor, System Generator, UGDMKB Generator, Wrapper and Glue

Generator, and URDS. It is desirable that these services be able to handle a large number

of requests simultaneously without noticeable degradation in the performance. It is also

desirable that these services be available for most of the time. One way to achieve these

objectives is to deploy the services in a runtime environment with Workload

Management (WLM). An example of such a runtime environment is the IBM’s

191

WebSphere Application Server 4.0 [IBM02]. WLM improves the performance,

scalability and reliability of an application by spreading multiple requests for a service

over resources that can accomplish the task. WLM distributes incoming requests across

application servers that contain identical copies of the service.

8.2.4.2 Interoperability

In the current USGI prototype implementation, the service components are

implemented as Java-RMI based services which communicate with each other via JRMP.

An alternative is to implement these services as Enterprise JavaBeans. Enterprise

JavaBeans are deployed in the EJB container and they communicate with each other via

RMI-IIOP. Another alternative is to implement these services as SOAP-based services

like Web Services, in which the services communicate with each other via SOAP. These

protocols promote a greater interoperability than JRMP. Using SOAP for inter-

component communication removes the tight coupling that currently exists between the

service components. In addition, SOAP is a firewall-friendly protocol, thus, it can remove

the restrictions in the current USGI prototype implementation that the services have to be

located within the same subnet.

8.2.4.3 Asynchronous Communication

All the communication in the current USGI prototype implementation is

synchronous. One service waits on other services to return results. Making these

communications asynchronous and using remote event notification will allow a greater

flexibility, a higher system throughput and a better response time. The use of

asynchronous messaging allows the development of loosely-connected systems. These

systems are typically more resilient in the event of failures, and more easily extensible as

new applications are developed. Additionally, messaging provides an effective means of

transmitting events between applications. Asynchronous messaging can be incorporated

into the implementation using Java Message Service (JMS). The service components can

be implemented as EJB components which integrate with JMS, thus allowing the

192

enterprise beans to participate fully in loosely connected systems. The EJB service

components can then asynchronously notify other components of the occurrence of

events. Remote event notification features will allow the Model to notify the Controller

of changes in events in the model, which can be rendered as the View in the system.

8.2.4.4 System Security

In the current USGI prototype implementation, users of the system are not

authenticated and there is no notion of access levels that users may have. However, this

would be a desired feature, as service providers may not wish to advertise their services

to unauthorized users, or depending on the privileges the users possess, they may allow

access to only a certain set of functionality as opposed to others. The authentication

aspect for users can be handled through a form-based user id/password scheme. For

supporting users with different profiles, structuring the service components as EJB

components allows the implementation to leverage the role, based security services

offered by the EJB architecture.

8.3 Summary

This thesis has presented the UniFrame System-Level Generative Programming

Framework (USGPF), which facilitates a semi-automatic/automatic generation of a

distributed computing system from a system family. The UGDM defines various models

to capture the common and variable properties of a family of distributed computing

systems. The USGPF has built-in characteristics of the QoS to assist creating QoS-aware

distributed computing systems. The USGPF coupled with the UniFrame Approach

presents a promising solution for creating DCS by integrating geographically scattered,

heterogeneous software components. The results of applying this approach in the semi-

automatic construction of simple DCS from a banking domain are promising and

demonstrate the effectiveness of this research.

APPENDICES

193

APPENDICES

APPENDIX A: The Normalization Rules and Expansion Rules for Feature Description

This appendix contains the normalization rules (see Table A.1) and expansion rules (see

Table A.2) for feature description and correspondent brief description of the rules. The

material comes from van Deursen [van02].

Table A.1 Normalization Rules for Feature Description

Normalization Rules

Rules:
[N1] Fs, F, Fs’ , F?, Fs’ ’
[N2] Fs, F, Fs’ , F, Fs’ ’
[N3] F??
[N4] all(F)
[N5] all(Fs, all(Ft), Fs’)
[N6] one-of(F)
[N7] one-of(Fs, one-of(Ft), Fs’)
[N8] one-of(Fs, F?, Fs’)
[N9] more-of(F)
[N10] more-of(Fs, more-of(Ft), Fs’)
[N11] more-of(Fs, F?, Fs’)
[N12] default = A

= Fs, F, Fs’ , Fs’ ’
= Fs, F, Fs’ , Fs’ ’
= F?
= F
= all(Fs, Ft, Fs’)
= F
= one-of(Fs, Ft, Fs’)
= one-of(Fs, F, Fs’)?
= F
= more-of(Fs, Ft, Fs’)
= more-of(Fs, F, Fs’)?
= A

Table A.1 presents the normalization rules for feature description. Here are the brief

descriptions of each rule.

� N1 combines mandatory and optional features in a list.

� N2 removes duplicates in a list.

� N3 joins duplicate optionals.

194

� N4-N5 normalize special cases of all. Nested alls are flattened.

� N6-N7 normalize special cases of one-of. Nested one-ofs are flattened.

� N8 transforms a one-of containing one optional feature into an optional one-of.

� N9-N10 normalize special cases of more-of. Nested more-ofs are flattened.

� N11 transforms a more-of containing one optional feature into an optional more-

of.

� N12 eliminates the default = annotation.

Table A.2 Expansion Rules for Feature Description

Expansion Rules

Rules:
[E1] all(Fs, F?, Ft)
[E2] all(Ft, F?, Fs)
[E3] all(Fs, one-of(F, Ft), Fs’)
[E4] all(Fs, more-of(F, Ft), Fs’)

= one-of(all(Fs, F, Ft), all(Fs, Ft))
= one-of(all(Ft, F, F), all(Ft, Fs))
= one-of(all(Fs, F, Fs’), all(Fs, one-of(Ft), Fs’))
= one-of(all(Fs, F, Fs’),
 all(Fs, F, more-of(Ft),Fs’),
 all(Fs, more-of(Ft), Fs’))

Table A.2 presents the expansion rules for feature description. Here are the brief

descriptions of each rule.

� E1, E2 translates an all containing an optional feature expression in two cases:

one with and one without the feature.

� E3 translates an all containing a one-of in two cases: one with the first alternative

and one with the one-of with the first alternative removed.

� E4 translates an all containing a more-of into three cases: one with the first

alternative, one with the first alternative and the remaining more-of, and one with

only the remaining more-of.

195

APPENDIX B: Component Diagrams in the Banking Domain Example

This appendix consists of component diagrams for all cases of bank systems identified by

the architecture model in disjunctive normal form at component level for the banking

domain example. Totally there are four cases.

1

1..*

1..*

1 1

2

1..*

1..*

1..*

1..*

1..*

2 1

1

1

[Transaction
ServerManager]

[Customer
ValidationServer]

[ATM]

[Account
Database]

Figure B.2 Component Diagram of BankCase2
 for the Banking Domain Example

[Cashier
ValidationServer] [CashierTerminal]

[Deluxe
Transaction
Server]

1

1..*

2

1..* 1..*

1..*

1..*

1..*

2

1

1

1

[Transaction
ServerManager]

[Economic
Transaction
Server]

[Customer
ValidationServer]

[ATM]

Figure B.1 Component Diagram of BankCase1
 for the Banking Domain Example

[Cashier
ValidationServer] [CashierTerminal]

196

1 1

1..*

1..*

1..*

2

1

1

[Transaction
ServerManager]

[Account
Database]

[Cashier
ValidationServer] [CashierTerminal]

[Deluxe
Transaction
Server]

Figure B.4 Component Diagram of BankCase4
for the Banking Domain Example

2

1..* 1..*

1..*

1

1

[Transaction
ServerManager]

[Economic
Transaction
Server]

[Cashier
ValidationServer] [CashierTerminal]

Figure B.3 Component Diagram of BankCase3
 for the Banking Domain Example

197

APPENDIX C: Sequence Diagrams in the Banking Domain Example

This appendix consists of the sequence diagrams for all the use cases in the banking

domain example.

� ValidateUsers

This use case has two cases, ValidateUsers_Cashier and ValidateUsers_Customer.

The first case is to validate users who are cashiers. The second case is to validate

users who are customers. The sequence diagrams for these two cases are shown in

Figure C.1 and C.2 respectively.

Display validation status

Custome
r

Enter account number
and password

:ATM :CustomerValidationServer

Figure C.2 Sequence Diagram of ValidateUsers_Customer

validation status := validate()

Display validation status

Cashier

Enter cashier ID
and password

:CashierTerminal :CashierValidationServer

validation status := validate()

Figure C.1 Sequence Diagram of ValidateUsers_Cashier

198

� Login-exitAccount

This use case has two cases, Login-exitAccount_Cashier and Login-

exitAccount_Customer. The first case is to login and exit when users are cashiers. The

second case is to login and exit when users are customers. The sequence diagrams for

these two cases are shown in Figure C.3 and C.4 respectively.

� DepositMoney

There are four cases in this use case. Figure C.5 illustrates the first case, in which the

users are cashiers and the transaction subsystem consists of

EconomicTransactionServer. Figure C.6 illustrates the second case, in which the

users are cashiers and the transaction subsystem consists of DeluxeTransactionServer

Transaction Server ID = loginAccount()

Exit account successfully

Exit account (Enter
account number
and account type)

Login account successfully

Customer

Login account (Enter
account number
and account type)

:ATM :TransactionServerManager

exitAccount()

Figure C.4 Sequence Diagram of Login-exitAccount_Customer

Transaction Server ID := loginAccount()

Exit account successfully

Exit account (Enter
account number
and account type)

Login account successfully

Cashier

Login account (Enter
account number
and account type)

:CashierTerminal :TransactionServerManager

exitAccount()

Figure C.3 Sequence Diagram of Login-exitAccount_Cashier

199

and AccountDatabase. Figure C.7 the third case, in which the users are customers and

the transaction subsystem consists of EconomicTransactionServer. Figure C.8

illustrates the fourth case, in which the users are customers and the transaction

subsystem consists of DeluxeTransactionServer and AccountDatabase.

Transaction Server ID := loginAccount()

Exit account successfully

Exit account

Deposit successfully

deposit()

Login account successfully

Cashier

Enter account number
and account type

:CashierTerminal :TransactionServerManager :EconomicTransactionServer

Enter deposit amount

exitAccount()

Figure C.5 Sequence Diagram of DepositMoney (Case 1)

Transaction Server ID := loginAccount()

Account := getAccount()

saveAccount()

Exit account successfully

Exit account

Deposit successfully

deposit()

Login account successfully

Cashier

Enter account number
and account type

:CashierTerminal :TransactionServerManager :DeluxeTransactionServer

Enter deposit amount

exitAccount()

Figure C.6 Sequence Diagram of DepositMoney (case 2)

:AccountDatabase

deposit()

200

� WithdrawMoney

There are four cases in this use case. Figure C.9 illustrates the first case, in which the

users are cashiers and the transaction subsystem consists of

Account := getAccount()

Transaction Server ID := loginAccount()

saveAccount()

Exit account successfully

Exit account

Deposit successfully

deposit()

Login account successfully

Customer

Enter account type

:ATM :TransactionServerManager :DeluxeTransactionServer

Enter deposit amount

exitAccount()

Figure C.8 Sequence Diagram of DepositMoney (case 4)

:AccountDatabase

deposit()

Transaction Server ID := loginAccount()

Exit account successfully

Exit account

Deposit successfully

deposit()

Login account successfully

Customer

Enter account type

:ATM :TransactionServerManager :EconomicTransactionServer

Enter deposit amount

exitAccount()

Figure C.7 Sequence Diagram of DepositMoney (case 3)

201

EconomicTransactionServer. Figure C.10 illustrates the second case, in which the

users are cashiers and the transaction subsystem consists of DeluxeTransactionServer

and AccountDatabase. Figure C.11 the third case, in which the users are customers

and the transaction subsystem consists of EconomicTransactionServer. Figure C.12

illustrates the fourth case, in which the users are customers and the transaction

subsystem consists of DeluxeTransactionServer and AccountDatabase.

� TransferMoney

There are four cases in this use case. Figure C.13 illustrates the first case, in which

the users are cashiers and the transaction subsystem consists of

EconomicTransactionServer. Figure C.14 illustrates the second case, in which the

users are cashiers and the transaction subsystem consists of DeluxeTransactionServer

and AccountDatabase. Figure C.15 the third case, in which the users are customers

and the transaction subsystem consists of EconomicTransactionServer. Figure C.16

illustrates the fourth case, in which the users are customers and the transaction

subsystem consists of DeluxeTransactionServer and AccountDatabase.

Transaction Server ID := loginAccount()

Exit account successfully

Exit account

Withdraw successfully

withdraw()

Login account successfully

Cashier

Enter account number
and account type

:CashierTerminal :TransactionServerManager :EconomicTransactionServer

Enter withdraw amount

exitAccount()

Figure C.9 Sequence Diagram of WithdrawMoney (Case 1)

202

Transaction Server ID := loginAccount()

Exit account successfully

Exit account

Withdraw successfully

withdraw()

Login account successfully

Customer

Enter account type

:ATM :TransactionServerManager :EconomicTransactionServer

Enter withdraw amount

exitAccount()

Figure C.11 Sequence Diagram of WithdrawMoney (case 3)

Account := getAccount()

Transaction Server ID := loginAccount()

saveAccount()

Exit account successfully

Exit account

Withdraw successfully

withdraw()

Login account successfully

Cashier

Enter account number
and account type

:CashierTerminal :TransactionServerManager :DeluxeTransactionServer

Enter withdraw amount

exitAccount()

Figure C.10 Sequence Diagram of WithdrawMoney (case 2)

:AccountDatabase

withdraw()

203

Transaction Server ID := loginAccount()

Transaction Server ID := loginAccount()

Exit account (From)

Enter account number
and account type (To)

Exit account successfully

Exit account (To)

Transfer successfully

transfer()

Login account successfully

Cashier

Enter account number
and account type (From)

:CashierTerminal :TransactionServerManager :EconomicTransactionServer

Enter transfer amount

exitAccount()

Figure C.13 Sequence Diagram of TransferMoney (case 1)

Login account successfully

Exit account successfully

exitAccount()

Account := getAccount()

Transaction Server ID := loginAccount()

saveAccount()

Exit account successfully

Exit account

Withdraw successfully

withdraw()

Login account successfully

Customer

Enter account type

:ATM :TransactionServerManager :DeluxeTransactionServer

Enter withdraw amount

exitAccount()

Figure C.12 Sequence Diagram of WithdrawMoney (case 4)

:AccountDatabase

withdraw()

204

Transaction Server ID := loginAccount()

Exit account (From)

Enter account number
and account type (To)

Exit account successfully

Exit account (To)

Transfer successfully

transfer()

Login account successfully

Customer

Enter account number
and account type (From)

:ATM :TransactionServerManager :EconomicTransactionServer

Enter transfer amount

exitAccount()

Figure C.15 Sequence Diagram of TransferMoney (case 3)

Login account successfully

Exit account successfully

exitAccount()

Transaction Server ID := loginAccount()

Account := getAccount()(To, From)

Transaction Server ID := loginAccount()

Transaction Server ID := loginAccount()

Exit account (From)

Enter account number
and account type (To)

saveAccount()(To, From)

Exit account successfully

Exit account (To)

Transfer successfully

transfer()

Login account successfully

Cashier

Enter account number
and account type (From)

:CashierTerminal :TransactionServerManager :DeluxeTransactionServer

Enter transfer amount

exitAccount()

Figure C.14 Sequence Diagram of TransferMoney (case 2)

:AccountDatabase

transfer()

Login account successfully

Exit account successfully

exitAccount()

205

� OpenAccount

The users of this use case are cashiers. There are two cases in this use case. Figure

C.17 illustrates the first case, in which the transaction subsystem consists of

EconomicTransactionServer. Figure C.18 illustrates the second case, in which the

transaction subsystem consists of DeluxeTransactionServer and AccountDatabase.

� CloseAccount

The users of this use case are cashiers. There are two cases in this use case. Figure

C.19 illustrates the first case, in which the transaction subsystem consists of

EconomicTransactionServer. Figure C.20 illustrates the second case, in which the

transaction subsystem consists of DeluxeTransactionServer and AccountDatabase.

Account := getAccount()(To, From)

Transaction Server ID := loginAccount()

Transaction Server ID := loginAccount()

Exit account (From)

Enter account number
and account type (To)

saveAccount()(To, From)

Exit account successfully

Exit account (To)

Transfer successfully

transfer()

Login account successfully Return Transaction Server ID

Customer

Enter account number
and account type (From)

:ATM :TransactionServerManager :DeluxeTransactionServer

Enter transfer amount

exitAccount()

Figure C.16 Sequence Diagram of TransferMoney (case 4)

:AccountDatabase

transfer()

Login account successfully

Exit account successfully

exitAccount()

206

Enter account number,
customer name
and account type

saveAccount()

Open successfully and
return account number

openAccount()

Return Transaction Server ID
and account number

Cashier :CashierTerminal :TransactionServerManager :DeluxeTransactionServer

openAccount()

Figure C.17 Sequence Diagram of OpenAccount (case 1)

:AccountDatabase

Transaction Server ID ;= cloaseAccount()

removeAccount()

Remove successfully

closeAccount()

Cashier

Enter account number
and account type

:CashierTerminal :TransactionServerManager :DeluxeTransactionServer

Figure C.19 Sequence Diagram of CloseAccount (case 1)

:AccountDatabase

Open successfully and
return account number

openAccount()

Return Transaction Server ID
and account number

Cashier

Enter account number,
customer name
and account type

:CashierTerminal :TransactionServerManager :EconomicTransactionServer

openAccount()

Figure C.18 Sequence Diagram of OpenAccount (case 2)

207

Transaction Server ID := cloaseAccount()

Remove successfully

closeAccount()

Cashier

Enter account number
and account type

:CashierTerminal :TransactionServerManager :EconomicTransactionServer

Figure C.20 Sequence Diagram of CloseAccount (case 2)

208

APPENDIX D: Function Summary of Abstract Components
in the Banking Domain Example

This appendix documents function summaries for all the abstract components in the

banking domain example. These include function summaries for TransactionManager

(Table D.1), CashierTerminal (Table D.2), ATM (Table D.3), AccountDatabase (Table

D.4), DeluxeTransactionServer (Table D.5), EconomicTransactionServer (Table D.6),

CashierValidationServer (Table D.7), CustomerValidationServer (Table D.8).

Table D.1 Function Summary for TransactionManager

TransactionServerManager
Actions Inputs Outputs Communication Pattern

loginAccount() Account Number, Account Type Transaction Server ID two-way-synchronous
exitAccount() Account Number, Account Type NONE two-way-synchronous
openAccount() Account Number, Account Type Account Number,

Account Type,
Transaction Server ID

two-way-synchronous

closeAccount() Account Number, Account Type Transaction Server ID two-way-synchronous

Table D.2 Function Summary for CashierTerminal

CashierTerminal
Actions Inputs Outputs Communication

Pattern
validate() Cashier ID, Password Validation

Status
two-way-
synchronous

deposit() Account Number, Account Type, Deposit
Amount

NONE two-way-
synchronous

withdraw() Account Number, Account Type, Withdraw
Amount

NONE two-way-
synchronous

transfer() Account Number (from), Account Type (from),
Account Number (to), Account Type (to),
Transfer Amount

NONE two-way-
synchronous

checkBalance() Account Number, Account Type NONE two-way-
synchronous

openAccount() Customer Name, Account Number, Account
Type

Account
Number

two-way-
synchronous

closeAccount() Account Number, Account Type NONE two-way-
synchronous

209

Table D.3 Function Summary for ATM

ATM
Actions Inputs Outputs Communication

Pattern
validate() Account Number, Password Validation

Status
two-way-
synchronous

deposit() Account Number, Account Type, Deposit
Amount

NONE two-way-
synchronous

withdraw() Account Number, Account Type, Withdraw
Amount

NONE two-way-
synchronous

transfer() Account Number (from), Account Type (from),
Account Number (to), Account Type (to),
Transfer Amount

NONE two-way-
synchronous

checkBalance() Account Number, Account Type NONE two-way-
synchronous

Table D.4 Function Summary for AccountDatabase

AccountDatabase
Actions Inputs Outputs Communication Pattern

getAccount() Account Number, Account Type Account two-way-synchronous or
two-way-asynchronous

saveAccount() Account NONE two-way-synchronous or
two-way-asynchronous

removeAccount() Account Number, Account Type NONE two-way-synchronous or
two-way-asynchronous

Table D.5 Function Summary for DeluxeTransactionServer

DeluxeTransactionServer
Actions Inputs Outputs Communication

Pattern
deposit() Account Number, Account Type, Deposit

Amount
NONE two-way-

synchronous
withdraw() Account Number, Account Type, Withdraw

Amount
NONE two-way-

synchronous
transfer() Account Number (from), Account Type (from),

Account Number (to), Account Type (to),
Transfer Amount

NONE two-way-
synchronous

checkBalance() Account Number, Account Type NONE two-way-
synchronous

openAccount() Customer Name, Account Number, Account
Type

Account
Number

two-way-
synchronous

closeAccount() Account Number, Account Type NONE two-way-
synchronous

210

Table D.6 Function Summary for EconomicTransactionServer

EconomicTransactionServer
Actions Inputs Outputs Communication

Pattern
deposit() Account Number, Account Type, Deposit

Amount
NONE two-way-

synchronous
withdraw() Account Number, Account Type, Withdraw

Amount
NONE two-way-

synchronous
transfer() Account Number (from), Account Type (from),

Account Number (to), Account Type (to),
Transfer Amount

NONE two-way-
synchronous

checkBalance() Account Number, Account Type NONE two-way-
synchronous

openAccount() Customer Name, Account Number, Account
Type

Account
Number

two-way-
synchronous

closeAccount() Account Number, Account Type NONE two-way-
synchronous

Table D.7 Function Summary for CashierValidationServer

CashierValidationServer
Actions Inputs Outputs Communication Pattern

validate() Cashier ID, Password Validation
Status

two-way-synchronous

Table D.8 Function Summary for CustomerValidationServer

CustomerValidationServer
Actions Inputs Outputs Communication Pattern

validate() Account number, Password Validation
Status

two-way-synchronous

211

APPENDIX E: Interface Model for the Banking Domain Example

This appendix consists of the interface model for the banking domain example. The

model consists of interface descriptions for ITransactionServerManager (Table E.1),

IValidation (Table E.2), IAccountManagement (Table E.3), IAccountDatabase (Table

E.4) ande ICustomerManagement (Table E.5).

Table E.1 Interface Description for IAccountDatabase

IAccountDatabase

1. Syntax
Account getAccount(String accountNumber, int accountType);

Pre: values have been provided for the accountNumber and accountType.
Post: if the specified account exits, return the account; otherwise return NULL.
Invariant: accountNumber, accountType
Communication Pattern: cp2s or cp2a
Description: This function returns an account object as identified by the parameters. It

returns null if the account specified does not exist.
void saveAccount(Account account);

Pre: account is valid
Post: the database has been updated appropriately.
Invariant: account
Communication Pattern: cp2s or cp2a
Description: This function updates the account if it already exists; otherwise it adds an

entry in the database for this new account.
void removeAccount(String accountNumber, int accountType);

Pre: values have been provided for the account and accountType
Post: the account specified is removed and the database has been updated appropriately
Invariant: accountNumber, accountType
Communication Pattern: cp2s or cp2a
Description: This function removes the specified account if it exists; otherwise it does
nothing.

2. Variation
IAccountDatabase: one-of (IAccountDatabaseCase1, IAccountDatabaseCase2)
IAccountDatabaseCase1: { cp2s}
IAccountDatabaseCase2: { cp2a}

3. Default
IAccountDatabase: IAccountDatabaseCase1

212

Table E.2 Interface IValidation for the banking domain Example

IValidation

1. Syntax
boolean validate(String id, String password);

Pre: values have been provided for id and password.
Post: return true if the id and password are valid; otherwise, return false.
Invariant: id, password
Communication Pattern: cp2s
Description: This function validates a id/password pair.

2. Variation
IValidation: IValidationCase1
IValidationCase1: { cp2s}

Table E.3 Interface IAccountManagement for the banking domain Example

IAccountManagement

1. Syntax
void deposit(double amount, String acountNumber, int accountType);

Pre: amount > 0 && account exists
Post: if the account exists, account balance increased by amount
 otherwise throw BankingException(“Account Not Exists”)
Invariant: account.balance >= 0
Communication Pattern: cp2s
Description: This function deposits the money into an account.

void withdraw(double amount, String accountNumber, int accountType);
pre: amount > 0 && amount <= account.balance, account exits
post : if the account exists, account balance decreased by amount

 otherwise throw BankingException(“Account Not Exist”)
Invariant: account.balance > = 0;
Communication Pattern: cp2s
Description: This function withdraws money from an account.

void transfer(double amount, String accountNumberFrom, int accountTypeFrom,
 String accountNumberTo, int accountTypeTo)

pre: amount > 0 && amount <= account(from).balance, account exits
post: account(to).balance increased by the amount
Invariant: account(from).balance >= 0 && account(to).balance >= 0
Communication Pattern: cp2s
Description: This function transfers money from one account to another

double checkBalance(String accountNumber, int accountType);
pre : account exits
post : if the account exists, return the balance

 otherwise throw BankingException(“Account Not Exist”)
Invariant: account.balance does not change
Communication Pattern: cp2s
Description: This function checks the balance of an account

2. Variation
IAccountManagement: IAccountManagementCase1
IAccountManagementCase1: { cp2s}

213

Table E.4 Interface Description for ITransactionServerManger

ITransactionServerManager

1. Syntax
String loginAccount (String accountNumber, int accountType);

Pre: values have been provided for accountNumber and accountType.
Post: If login successful, lock the account and return the account server addres; otherwise,

return null.
Invariant: accountNumber, accountType.
Communication Pattern: cp2s
Description: This function checks if the specified account exists. If the account exists and

is unlocked, it locks the account and returns the transaction server address for the
account; otherwise it returns null.

void exitAccount(String accountNumber, int accountType);
Pre: values have been provided for accountNumber and accountType.
Post: If the account is locked, unlock the account; otherwise, do nothing.
Invariant: accountNumber, accountType
Communication Pattern: cp2s
Description: This function checks if the specified account exists. If the account exists and

is locked, it unlocks the account; otherwise it does nothing.
AccountInfo openAccount (String accountNumber, int accountType);

Pre: The account specified by the accountNumber and accountType does not exist. The
value for accountType is either 1 or 2.

Post: an account is opened.
Invariant: accountNumber, accountType.
Communication Pattern: cp2s
Description: This function checks if the account identified by accountNumber and

acountType exists on the transaction server manger. If the account does not exist, it
creates this account and identifies the transaction server for manage this account. If
the accountNumber is null, it assigns an account number. It returns the account
number, account type and transaction server address in an AccountInfo object.

String closeAccount (String accountNumber, int accountType);
pre: values have been provided for accountNumber and accountType.
post: the specified account is closed
Invariant: accountNumber and accountType.
Communication Pattern: cp2s
Description: This function removes the specified account from the transaction server

manager for a customer if the account exists and returns the transaction server
address so that the account can be removed from the database; otherwise it does
nothing and returns null.

2. Variation
ITransactionServerManger: ITransactionServerMangerCase1
ITransactionServerMangerCase1: { cp2s}

214

Table E.5 Interface ICustomerManagement for the banking domain Example

ICustomerManagement

1. Syntax
void openAccount (String customerName, String accountNumber, int accountType) throws

BankingException;
Pre: The account specified by the accountNumber and accountType does not exist. The value

for accountType is either 1 or 2.
Post: An account is opened
Invariant: customerName, accountNumber, accountType.
Communication Pattern: cp2s
Description: This function creates an account for a customer if the account identified by

accountNumber and accountType does not exist; otherwise it throws the exception that
the BankingException with the message “The Account Already Exists” . If the
accountType is invalid, it throws the BankingException with the message “ Invalid
Account Type” .

void closeAccount(String accountNumber, int accountType);
pre: account exists, the balance in the account is 0
post: if the account exists and the balance is 0, delete the account, if the account exists and the

 balance is not 0, throw BankingException(“Account Not Empty”), otherwise throw
 BankingException(“Account Already Exists”)

Invariant: accountNumber, accountType.
Communication Pattern: cp2s
Description: This function closes an account.

2. Variation
ICustomerManagement: ICustomerManagementCase1
ICustomerManagementCase1: { cp2s}

215

APPENDIX F: Abstract Component Model for the Banking Domain Example

This appendix consists of the abstract component model for the banking domain example.

The model includes UMM Specifications for AccountDatabaseCase1 (Table F.1 and

Table F.2), AccountDatabaseCase2 (Table F.3), DeluxeTransactionServerCase1 (Table

F.4), DeluxeTransactionServerCase2 (Table F.5), ATMCase1 (Table F.6),

CashierTerminalCase1 (Table F.7), CusotmerValidationServerCase1 (Table F.8),

CashierValidationServerCase1 (Table F.9), TransactionServerManagerCase1 (Table

F.10), and EconomicTransactionServerCase1 (Table F.11).

Table F.1 UMM Specification for AccountDatabaseCase1

Abstract Component: AccountDatabaseCase1
1. Component Name: AccountDatabase
2. Component Subcase: AccountDatabaseCase1
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide an account database service.
6. Computational Attributes:

6.1 Inherent Attributes:
6.1.1 id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A

6.2 Functional Attributes:
6.2.1 Function description: Serve as an account database.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract

6.2.4.1 Provided Interface: IAccountDatabaseCase1
6.2.4.2 Required Interface: NONE

6.2.5 Technology: N/A
6.2.6 Expected Resources: N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE

6.2.9 Alias: NONE
7. Cooperation Attributes

7.1 Preprocessing Collaborators: DeluxeTransactionServerCase1
7.2 Postprocessing Collaborators: NONE

8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: L0
8.3 Fault tolerance: L0

 (Continued in Table F.2)

216

Table F.2 UMM Specification for AccountDatabaseCase1
(Continued from Table F.1)

(Continued from Table F.1)

9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

Table F.3 UMM Specification for AccountDatabaseCase2

Abstract Component: AccountDatabaseCase2
1. Component Name: AccountDatabase
2. Component Subcase: AccountDatabaseCase2
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide an account database service.
6. Computational Attributes:

6.1 Inherent Attributes:
6.1.1 id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A

6.2 Functional Attributes:
6.2.1 Function description: Serve as an account database.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract

6.2.4.1 Provided Interface: IAccountDatabaseCase2
6.2.4.2 Required Interface: NONE

6.2.5 Technology: N/A
6.2.6 Expected Resources: N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE

7. Cooperation Attributes
7.1 Preprocessing Collaborators: DeluxeTransactionServerCase2
7.2 Postprocessing Collaborators: NONE

8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: L0
8.3 Fault tolerance: L0

9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

217

Table F.4 UMM Specification for DeluxeTransactionServerCase1

Abstract Component: DeluxeTransactionServerCase1

1. Component Name: DeluxeTransactionServer
2. Component Subcase: DeluxeTransactionServerCase1
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide transaction service in banking.
6. Computational Attributes:

6.1 Inherent Attributes:
6.1.1 id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A

6.2 Functional Attributes:
6.2.1 Function description: Act as transaction server in banking.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract

6.2.4.1 Provided Interface: IAccountManagementCase1,
ICustomerManagementCase1

6.2.4.2 Required Interface: IAccountDatabaseCase1
6.2.5 Technology: N/A
6.2.6 Expected Resources: N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE

7. Cooperation Attributes
7.1 Preprocessing Collaborators: CashierTerminalCase1, ATMCase1
7.2 Postprocessing Collaborators: AccountDatabaseCase1

8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: L0
8.3 Fault tolerance: L0

9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

218

Table F.5 UMM Specification for DeluxeTransactionServerCase2

Abstract Component: DeluxeTransactionServerCase2
1. Component Name: DeluxeTransactionServer
2. Component Subcase: DeluxeTransactionServerCase2
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide transaction service in banking.
6. Computational Attributes:

6.1 Inherent Attributes:
6.1.1 id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A

6.2 Functional Attributes:
6.2.1 Function description: Act as transaction server in banking.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract

6.2.4.1 Provided Interface: IAccountManagementCase1,
ICustomerManagementCase1

6.2.4.2 Required Interface: IAccountDatabaseCase2
6.2.5 Technology: N/A
6.2.6 Expected Resources: N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE

7. Cooperation Attributes
7.1 Preprocessing Collaborators: CashierTerminalCase1, ATMCase1
7.2 Postprocessing Collaborators: AccountDatabaseCase2

8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: L0
8.3 Fault tolerance: L0

9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

219

Table F.6 UMM Specification for ATMCase1

Abstract Component: ATMCase1
1. Component Name: ATM
2. Component Subcase: ATMCase1
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide GUI for ATM.
6. Computational Attributes:

6.1 Inherent Attributes:
6.1.1 id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A

6.2 Functional Attributes:
6.2.1 Function description: Act as ATM.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract

6.2.4.1 Provided Interface: IAccountManagementCase1, IValidationCase1,
IAccountManagementCase1

6.2.4.2 Required Interface: IAccountManagementCase1, IValidationCase1,
IAccountManagementCase1, ITransactionServerManagerCase1

6.2.5 Technology: N/A
6.2.6 Expected Resources: N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE

7. Cooperation Attributes
7.1 Preprocessing Collaborators: NONE
7.2 Postprocessing Collaborators: TansactionServerManagerCase1,

CustomerValidationServerCase1, DeluxeTransactionServerCase1,
DeluxeTransactionServerCase2, EconomicTransactionServerCase1

8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: L0
8.3 Fault tolerance: L0

9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

220

Table F.7 UMM Specification for CashierTerminalCase1

Abstract Component: CashierTerminalCase1
1. Component Name: CashierTerminal
2. Component Subcase: CashierTerminalCase1
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide GUI for cashiers.
6. Computational Attributes:

6.1 Inherent Attributes:
6.1.1 id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A

6.2 Functional Attributes:
6.2.1 Function description: Act GUI terminal for cashiers.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract

6.2.4.1 Provided Interface: IAccountManagementCase1, IValidationCase1,
IAccountManagementCase1

6.2.4.2 Required Interface: IAccountManagementCase1, IValidationCase1,
IAccountManagementCase1, ITransactionServerManagerCase1

6.2.5 Technology: N/A
6.2.6 Expected Resources: N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE

7. Cooperation Attributes
7.1 Preprocessing Collaborators: NONE
7.2 Postprocessing Collaborators: TansactionServerManagerCase1,

CustomerValidationServerCase1, DeluxeTransactionServerCase1,
DeluxeTransactionServerCase2, EconomicTransactionServerCase1

8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: L0
8.3 Fault tolerance: L0

9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

221

Table F.8 UMM Specification for CustomerValidationServerCase1

Abstract Component: CustomerValidationServerCase1
1. Component Name: CustomerValidationServer
2. Component Subcase: CustomerValidationServerCase1
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide ATM validation service in banking.
6. Computational Attributes:

6.1 Inherent Attributes:
6.1.1 id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A

6.2 Functional Attributes:
6.2.1 Function description: Act as validation server for ATMs in banking.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract

6.2.4.1 Provided Interface: IValidationCase1
6.2.4.2 Required Interface: NONE

6.2.5 Technology: N/A
6.2.6 Expected Resources: N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE

7. Cooperation Attributes
7.1 Preprocessing Collaborators: ATMCase1
7.2 Postprocessing Collaborators: NONE

8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: L0
8.3 Fault tolerance: L0

9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

222

Table F.9 UMM Specification for CashierValidationServerCase1

Abstract Component: CashierValidationServerCase1
1. Component Name: CashierValidationServer
2. Component Subcase: CashierValidationServerCase1
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide Cashier validation service in banking.
6. Computational Attributes:

6.1 Inherent Attributes:
6.1.1 id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A

6.2 Functional Attributes:
6.2.1 Function description: Act as validation server for Cashiers in banking.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract

6.2.4.1 Provided Interface: IValidationCase1
6.2.4.2 Required Interface: NONE

6.2.5 Technology: N/A
6.2.6 Expected Resources: N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE

7. Cooperation Attributes
7.1 Preprocessing Collaborators: CashierTerminalCase1
7.2 Postprocessing Collaborators: NONE

8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: L0
8.3 Fault tolerance: L0

9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

223

Table F.10 UMM Specification for TransactionServerManagerCase1

Abstract Component: TransactionServerManagerCase1
1. Component Name: TransactionServerManager
2. Component Subcase: TransactionServerManagerCase1
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide transaction server management service in banking.
6. Computational Attributes:

6.1 Inherent Attributes:
6.1.1 id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A

6.2 Functional Attributes:
6.2.1 Function description: Act as transaction server manager for ATMs in banking.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract

6.2.4.1 Provided Interface: ITransactionServerManagerCase1
6.2.4.2 Required Interface: NONE

6.2.5 Technology: N/A
6.2.6 Expected Resources: N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE

7. Cooperation Attributes
7.1 Preprocessing Collaborators: CashierTerminalCase1, ATMCase1
7.2 Postprocessing Collaborators: NONE

8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: L0
8.3 Fault tolerance: L0

9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

224

Table F.11 UMM Specification for EconomicTransactionServerCase1

Abstract Component: EconomicTransactionServerCase1
1. Component Name: EconomicTransactionServer
2. Component Subcase: EconomicTransactionServerCase1
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide transaction service in banking.
6. Computational Attributes:

6.1 Inherent Attributes:
6.1.1 id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A

6.2 Functional Attributes:
6.2.1 Function description: Act as transaction server in banking.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract

6.2.4.1 Provided Interface: IAccountManagementCase1,
ICustomerManagementCase1

6.2.4.2 Required Interface: IAccountDatabaseCase1
6.2.5 Technology: N/A
6.2.6 Expected Resources: N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE

7. Cooperation Attributes
7.1 Preprocessing Collaborators: CashierTerminalCase1, ATMCase1
7.2 Postprocessing Collaborators: NONE

8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: L0
8.3 Fault tolerance: L0

9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A
9.4 Quality Level: N/A

225

APPENDIX G: QoS Composition and Decomposition Rules
for the Banking Domain Example

This appendix consists of the QoS composition and decomposition rules for the banking

domain example derived from the QoS composition and decomposition meta-rules stated

in Table 5.38. These rules are organized into four sets: QoS composition rules for

throughput (Table G.1), QoS composition rules for endToEndDelay (Table G.2), QoS

decomposition rules for throughput (Table G.3), and QoS decomposition rules for

endToEndDelay (Table G.4).

Table G.1 QoS Composition Rules for throughput for the Banking Domain Example

QoS Composition Rules for throughput for the Banking Domain Example

System_throughput = [CriticalUseCaseModelInstance]_throughput
[CriticalUseCaseModelInstance]_throughput = min ({ CriticalUseCase} _throughput)

1/DepositMoneyCase1_1_throughput = 1/CashierTerminal.deposit_throughput +

1/DeluxeTransactionServer.deposit_throughput + 1/AccountDatabase.getAccount_throughput +
1/AccountDatabase.saveAccount_throughput

1/DepositMoneyCase1_2_throughput = 1/CashierTerminal.deposit_throughput +
1/min(DeluxeTransactionServer.deposit_throughput, AccountDatabase.getAccount_throughput,
AccountDatabase.saveAccount_throughput)

1/DepositMoneyCase2_throughput = 1/CashierTerminal.deposit_throughput +
1/EconomicServer.deposit_throughput

1/WithdrawMoneyCase1_1_throughput = 1/CashierTerminal.withdraw_throughput +
1/DeluxeTransactionServer.withdraw_throughput + 1/AccountDatabase.getAccount_throughput
+ 1/AccountDatabase.saveAccount_throughput

1/WithdrawMoneyCase1_2_throughput = 1/CashierTerminalQoS.withdraw.throughput +
1/min(DeluxeTransactionServer.withdraw_throughput,
AccountDatabase.getAccount_throughput, AccountDatabase.saveAccount_throughput)

1/WithdrawMoneyCase2_throughput = 1/CashierTerminal.withdraw_throughput +
1/EconomicServer.withdraw_throughput

1/TransferMoneyCase1_1_throughput = 1/CashierTerminal.transfer_throughput +
1/DeluxeTransactionServer.transfer_throughput + 1/AccountDatabase.getAccount_throughput +
1/AccountDatabase.saveAccount_throughput

1/TransferMoneyCase1_2_throughput = 1/CashierTerminal.transfer_throughput +
1/min(DeluxeTransactionServer.transfer_throughput, AccountDatabase.getAccount_throughput,
AccountDatabase.saveAccount_throughput)

1/TransferMoneyCase2_throughput = 1/CashierTerminal.transfer_throughput +
1/EconomicServer.transfer_throughput

226

Table G.2 QoS Composition Rules for endToEndDelay
 for the Banking Domain Example

QoS Composition Rules for endToEndDelay for the Banking Domain Example

SystemQoS.endToEndDelay = [CriticalUseCaseModelInstance]_endToEndDelay
[CriticalUseCaseModelInstance]_endToEndDelay = max ({ CriticalUseCase} _endToEndDelay)

DepositMoneyCase1_1_endToEndDelay = sum(CashierTerminal.deposit_endToEndDelay,

DeluxeTransactionServer.deposit_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

DepositMoneyCase1_2_endToEndDelay = sum(CashierTerminal.deposit_endToEndDelay,
DeluxeTransactionServer.deposit_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

DepositMoneyCase2_endToEndDelay = sum(CashierTerminal.deposit_endToEndDelay,
EconomicTransactionServer.deposit_endToEndDelay)

WithdrawMoneyCase1_1_endToEndDelay = sum(CashierTerminal.withdraw_endToEndDelay,
DeluxeTransactionServer.withdraw_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

WithdrawMoneyCase1_2_endToEndDelay = sum(CashierTerminal.withdraw_endToEndDelay,
DeluxeTransactionServer.withdraw_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

WithdrawMoneyCase2_endToEndDelay = sum(CashierTerminal.withdraw_endToEndDelay,
EconomicTransactionServer.withdraw_endToEndDelay)

TransferMoneyCase1_1_endToEndDelay = sum(CashierTerminal.transfer_endToEndDelay,
DeluxeTransactionServer.transfer_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

TransferMoneyCase1_2_endToEndDelay = sum(CashierTerminal.transfer_endToEndDelay,
DeluxeTransactionServer.transfer_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

TransferMoneyCase2_endToEndDelay = sum(CashierTerminal.transfer_endToEndDelay,
EconomicTransactionServer.transfer_endToEndDelay)

227

Table G.3 QoS Decomposition Rules for throughput
 for the Banking Domain Example

QoS Decomposition Rules for Throughput for Bank

[CriticalUseCaseModelInstance]_throughput > System_throughput
{ CriticalUseCase} _throughput > System_throughput

<DepositMoneyCase1_1>_throughput > System_throughput

CashierTerminal.deposit_throughput > System_throughput
DeluxeTransactionServer.deposit_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput

<DepositMoneyCase1_2>_throughput > System_throughput
CashierTerminal.deposit_throughput > System_throughput
DeluxeTransactionServer.deposit_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput

<DepositMoneyCase2>_throughput > System_throughput
CashierTerminal.deposit_throughput > System_throughput
EconomicTransactionServer.deposit_throughput > System_throughput

<WithdrawMoneyCase1_1>_throughput > System_throughput
CashierTerminal.withdraw_throughput > System_throughput
DeluxeTransactionServer.withdraw_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput

<WithdrawMoneyCase1_2>_throughput > System_throughput
CashierTerminal.withdraw_throughput > System_throughput
DeluxeTransactionServer.withdraw_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput

<WithdrawMoneyCase2>_throughput > System_throughput
CashierTerminal.withdraw_throughput > System_throughput
EconomicTransactionServer.withdraw_throughput > System_throughput

<TransferMoneyCase1_1>_throughput > System_throughput
CashierTerminal.transfer_throughput > System_throughput
DeluxeTransactionServer.transfer_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughtput > System_throughput

<TransferMoneyCase1_2>_throughput > System_throughput
CashierTerminal.transfer_throughput > System_throughput
DeluxeTransactionServer.transfer_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughtput > System_throughput

<TransferMoneyCase2>_throughput > System_throughput
CashierTerminal.transfer_throughput > System_throughput
EconomicTransactionServer.transfer_throughput > System_throughput

228

Table G.4 QoS Decomposition Rules for endToEndDelay
 for the Banking Domain Example

[CriticalUseCaseModelInstance]_endToEndDelay < System_endToEndDelay
{ CriticalUseCase} _endToEndDelay < System_endToEndDelay

<DeposistMoneyCase1_1>_endToEndDelay < System_endToEndDelay

CashierTerminal.deposit_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.deposit_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

<DeposistMoneyCase1_2>_endToEndDelay < System_endToEndDelay
CashierTerminal.deposit_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.deposit_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

<DeposistMoneyCase2>_endToEndDelay < System_endToEndDelay
CashierTerminal.deposit_endToEndDelay < System_endToEndDelay
EconomicTransactionServer.deposit_endToEndDelay < System_endToEndDelay

<WithdrawMoneyCase1_1>_endToEndDelay < System_endToEndDelay
CashierTerminal.withdraw_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.withdraw_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

<WithdrawMoneyCase1_2>_endToEndDelay < System_endToEndDelay
CashierTerminal.withdraw_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.withdraw_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

<WithdrawMoneyCase2>_endToEndDelay < System_endToEndDelay
CashierTerminal.withdraw_endToEndDelay < System_endToEndDelay
EconomicTransactionServer.withdraw_endToEndDelay < System_endToEndDelay

<TransferMoneyCase1_1>_endToEndDelay < System_endToEndDelay
CashierTerminal.transfer_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.transfer_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

<TransferMoneyCase1_2>_endToEndDelay < System_endToEndDelay
CashierTerminal.transfer_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.transfer_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

<TransferMoneyCase2>_endToEndDelay < System_endToEndDelay
CashierTerminal.transfer_endToEndDelay < System_endToEndDelay
EconomicTransactionServer.transfer_endToEndDelay < System_endToEndDelay

229

APPENDIX H: QoS Composition and Decomposition Model

for the Banking Domain Example

This appendix consists of the QoS Composition and Decomposition Model (QCDM) for

the banking domain example. The model consists of the QoS composition and

decomposition rules for the three cases of the Critical Use Case Model in disjunctive

normal form in the banking domain example. Table H.1 and Table H.2 illustrate the rules

for CriticalUseCase1. Table H.3 and H.4 illustrate the rules for CriticalUseCase2. Table

H.5 and Table H.6 illustrate the rules for CriticalUseCase3.

Table H.1 QCDM for CriticalUseCase1

QoS Composition and Decomposition Model for CriticalUseCase1

1. QoS Composition Rules for throughput
System_throughput = CriticaluseCase1_throughput
CriticalUseCase1_throughput = min (DepositMoneyCase1_1_throughput,

WithdrawMoneyCase1_1_throughput, TransferMoneyCase1_1_throughput)
1/DepositMoneyCase1_1_throughput = 1/CashierTerminal.deposit_throughput +

1/DeluxeTransactionServer.deposit_throughput + 1/AccountDatabase.getAccount_throughput +
1/AccountDatabase.saveAccount_throughput

1/WithdrawMoneyCase1_1_throughput = 1/CashierTerminal.withdraw_throughput +
1/DeluxeTransactionServer.withdraw_throughput + 1/AccountDatabase.getAccount_throughput
+ 1/AccountDatabase.saveAccount_throughput

1/TransferMoneyCase1_1_throughput = 1/CashierTerminal.transfer_throughput +
1/DeluxeTransactionServer.transfer_throughput + 1/AccountDatabase.getAccount_throughput +
1/AccountDatabase.saveAccount_throughput

2. QoS Composition Rules for endToEndDelay
SystemQoS.endToEndDelay = CriticalUseCase1_endToEndDelay
CriticalUseCase1_endToEndDelay = max (DepositMoneyCase1_1_endToEndDelay,

WithdrawMoneyCase1_1_endToEndDelay, TransferMoneyCase1_1_endToEndDelay)
DepositMoneyCase1_1_endToEndDelay = sum(CashierTerminal.deposit_endToEndDelay,

DeluxeTransactionServer.deposit_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

WithdrawMoneyCase1_1_endToEndDelay = sum(CashierTerminal.withdraw_endToEndDelay,
DeluxeTransactionServer.withdraw_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

TransferMoneyCase1_1_endToEndDelay = sum(CashierTerminal.transfer_endToEndDelay,
DeluxeTransactionServer.transfer_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

(Continued in Table H.2)

230

Table H.2 QCDM for CriticalUseCase1 (Continued from Table H.1)

QoS Composition and Decomposition Model for CriticalUseCase1

(Continued from Table H.1)

3. QoS Decomposition Rules for throughput
CriticalUseCase1_throughput > System_throughput
DepositMoneyCase1_1_throughput > System_throughput
WithdrawMoneyCase1_1_throughput > System_throughput
TransferMoenyCase1_1_throughput > System_throughput

<DepositMoneyCase1_1>_throughput > System_throughput

CashierTerminal.deposit_throughput > System_throughput
DeluxeTransactionServer.deposit_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput

<WithdrawMoneyCase1_1>_throughput > System_throughput
CashierTerminal.withdraw_throughput > System_throughput
DeluxeTransactionServer.withdraw_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput

<TransferMoneyCase1_1>_throughput > System_throughput
CashierTerminal.transfer_throughput > System_throughput
DeluxeTransactionServer.transfer_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughtput > System_throughput

4. QoS Decomposition Rules for endToEndDelay
CriticalUseCase1_endToEndDelay < System_endToEndDelay
DepositMoneyCase1_1_endToEndDelay < System_endToEndDelay
WithdrawMoneyCase1_1_endToEndDelay < System_endToEndDelay
TransferMoenyCase1_1_endToEndDelay < System_endToEndDelay

<DeposistMoneyCase1_1>_endToEndDelay < System_endToEndDelay

CashierTerminal.deposit_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.deposit_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

<WithdrawMoneyCase1_1>_endToEndDelay < System_endToEndDelay
CashierTerminal.withdraw_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.withdraw_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

<TransferMoneyCase1_1>_endToEndDelay < System_endToEndDelay
CashierTerminal.transfer_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.transfer_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

231

Table H.3 QCDM for CriticalUseCase2

QoS Composition and Decomposition Model for CriticalUseCase2

1. QoS Composition Rules for throughput
System_throughput = CriticalUseCase2_throughput
CriticalUseCase2_throughput = min (DepositMoneyCase1_2_throughput,

WithdrawMoneyCase1_2_throughput, TransferMoneyCase1_2_throughput)
1/DepositMoneyCase1_2_throughput = 1/CashierTerminal.deposit_throughput +

1/min(DeluxeTransactionServer.deposit_throughput, AccountDatabase.getAccount_throughput,
AccountDatabase.saveAccount_throughput)

1/WithdrawMoneyCase1_2_throughput = 1/CashierTerminalQoS.withdraw.throughput +
1/min(DeluxeTransactionServer.withdraw_throughput,
AccountDatabase.getAccount_throughput, AccountDatabase.saveAccount_throughput)

1/TransferMoneyCase1_2_throughput = 1/CashierTerminal.transfer_throughput +
1/min(DeluxeTransactionServer.transfer_throughput, AccountDatabase.getAccount_throughput,
AccountDatabase.saveAccount_throughput)

2. QoS Composition Rules for endToEndDelay
SystemQoS.endToEndDelay = CriticalUseCase2_endToEndDelay
CriticalUseCase2_endToEndDelay = max (DepositMoneyCase1_2_endToEndDelay,

WithdrawMoneyCase1_2_endToEndDelay, TransferMoneyCase1_2_endToEndDelay)
DepositMoneyCase1_2_endToEndDelay = sum(CashierTerminal.deposit_endToEndDelay,

DeluxeTransactionServer.deposit_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

WithdrawMoneyCase1_2_endToEndDelay = sum(CashierTerminal.withdraw_endToEndDelay,
DeluxeTransactionServer.withdraw_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

TransferMoneyCase1_2_endToEndDelay = sum(CashierTerminal.transfer_endToEndDelay,
DeluxeTransactionServer.transfer_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

(Continued in Table H.4)

232

Table H.4 QCDM for CriticalUseCase2 (Continued from Table H.3)

QoS Composition and Decomposition Model for CriticalUseCase2

(Continued from Table H.3)

3. QoS Decomposition Rules for throughput
CriticalUseCase2_throughput > System_throughput
DepositMoneyCase1_2_throughput > System_throughput
WithdrawMoneyCase1_2_throughput > System_throughput
TransferMoenyCase1_2_throughput > System_throughput

<DepositMoneyCase1_2>_throughput > System_throughput

CashierTerminal.deposit_throughput > System_throughput
DeluxeTransactionServer.deposit_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput

<WithdrawMoneyCase1_2>_throughput > System_throughput
CashierTerminal.withdraw_throughput > System_throughput
DeluxeTransactionServer.withdraw_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput

<TransferMoneyCase1_2>_throughput > System_throughput
CashierTerminal.transfer_throughput > System_throughput
DeluxeTransactionServer.transfer_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughtput > System_throughput

4. QoS Decomposition Rules for endToEndDelay
CriticalUseCase2_endToEndDelay < System_endToEndDelay
DepositMoneyCase1_2_endToEndDelay < System_endToEndDelay
WithdrawMoneyCase1_2_endToEndDelay < System_endToEndDelay
TransferMoenyCase1_2_endToEndDelay < System_endToEndDelay

<DeposistMoneyCase1_2>_endToEndDelay < System_endToEndDelay

CashierTerminal.deposit_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.deposit_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

<WithdrawMoneyCase1_2>_endToEndDelay < System_endToEndDelay
CashierTerminal.withdraw_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.withdraw_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

<TransferMoneyCase1_2>_endToEndDelay < System_endToEndDelay
CashierTerminal.transfer_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.transfer_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

233

Table H.5 QCDM for CriticalUseCase3

QoS Composition and Decomposition Model for CriticalUseCase3

1. QoS Composition Rules for throughput
System_throughput = CriticalUseCase3_throughput
CriticalUseCase3_throughput = min (DepositMoneyCase2_throughput,

WithdrawMoneyCase2_throughput, TransferMoneyCase2_throughput)
1/DepositMoneyCase2_throughput = 1/CashierTerminal.deposit_throughput +

1/EconomicServer.deposit_throughput
1/WithdrawMoneyCase2_throughput = 1/CashierTerminal.withdraw_throughput +

1/EconomicServer.withdraw_throughput
1/TransferMoneyCase2_throughput = 1/CashierTerminal.transfer_throughput +

1/EconomicServer.transfer_throughput

2. QoS Composition Rules for endToEndDelay
SystemQoS.endToEndDelay = CriticalUseCase3_endToEndDelay
CriticalUseCase3_endToEndDelay = max (DepositMoneyCase2_endToEndDelay,

WithdrawMoneyCase2_endToEndDelay, TransferMoneyCase2_endToEndDelay)
DepositMoneyCase2_endToEndDelay = sum(CashierTerminal.deposit_endToEndDelay,

EconomicTransactionServer.deposit_endToEndDelay)
WithdrawMoneyCase2_endToEndDelay = sum(CashierTerminal.withdraw_endToEndDelay,

EconomicTransactionServer.withdraw_endToEndDelay)
TransferMoneyCase2_endToEndDelay = sum(CashierTerminal.transfer_endToEndDelay,

EconomicTransactionServer.transfer_endToEndDelay)

3. QoS Decomposition Rules for throughput
CriticalUseCase3_throughput > System_throughput
DepositMoneyCase2_throughput > System_throughput
WithdrawMoneyCase2_throughput > System_throughput
TransferMoenyCase2_throughput > System_throughput

<DepositMoneyCase2>_throughput > System_throughput

CashierTerminal.deposit_throughput > System_throughput
EconomicTransactionServer.deposit_throughput > System_throughput

<WithdrawMoneyCase2>_throughput > System_throughput
CashierTerminal.withdraw_throughput > System_throughput
EconomicTransactionServer.withdraw_throughput > System_throughput

<TransferMoneyCase2>_throughput > System_throughput
CashierTerminal.transfer_throughput > System_throughput
EconomicTransactionServer.transfer_throughput > System_throughput

(Continued in Table H.6)

234

Table H.6 QCDM for CriticalUseCase3 (Continued from Table H.5)

QoS Composition and Decomposition Model for CriticalUseCase3

(Continued from Table H.5)

4. QoS Decomposition Rules for endToEndDelay
CriticalUseCase3_endToEndDelay < System_endToEndDelay
DepositMoneyCase2_endToEndDelay < System_endToEndDelay
WithdrawMoneyCase2_endToEndDelay < System_endToEndDelay
TransferMoenyCase2_endToEndDelay < System_endToEndDelay

<DeposistMoneyCase2>_endToEndDelay < System_endToEndDelay

CashierTerminal.deposit_endToEndDelay < System_endToEndDelay
EconomicTransactionServer.deposit_endToEndDelay < System_endToEndDelay

<WithdrawMoneyCase2>_endToEndDelay < System_endToEndDelay
CashierTerminal.withdraw_endToEndDelay < System_endToEndDelay
EconomicTransactionServer.withdraw_endToEndDelay < System_endToEndDelay

<TransferMoneyCase2>_endToEndDelay < System_endToEndDelay
CashierTerminal.transfer_endToEndDelay < System_endToEndDelay

EconomicTransactionServer.transfer_endToEndDelay < System_endToEndDelay

235

APPENDIX I: UGDM in XML Format for the Banking Domain Example

This appendix consists of various models of the UGDM in the XML format for the

banking domain example. The models documented in this appendix include Architecture

Model in Disjunctive Normal Form (AMDNF) at the component level (Table I.1 and

Table I.2), Architecture Model in Disjunctive Normal Form (AMDNF) at the

function/interface level (Table I.3, Table I.4, Table I.5 and Table I.6), Abstract

Component Interaction Model (Table I.7), Architecture Model in Disjunctive Normal

Form and Critical Use Case Model Mapping (Function/Interface Level) (Table I.8) and

the Mapping of AMDNF from Component Level to Function/Interface Level (Table I.9).

Table I.1 AMDNF at Component Level in the XML Format

<?xml version="1.0" encoding='utf-8'?>

<!-- architecture at component level for the banking domain example -->

<architecture_component>
 <system_name> Bank </system_name>
 <case>
 <case_name> BankCase1 </case_name>
 <component> ATM </component>
 <component> CashierTerminal </component>
 <component> CustomerValidationServer </component>
 <component> CashierValidationServer </component>
 <component> TransactionServerManager </component>
 <component> EconomicTransactionServer </component>
 </case>
 <case>
 <case_name> BankCase2 </case_name>
 <component> ATM </component>
 <component> CashierTerminal </component>
 <component> CustomerValidationServer </component>
 <component> CashierValidationServer </component>
 <component> TransactionServerManager </component>
 <component> DeluxeTransactionServer </component>
 <component> AccountDatabase </component>
 </case>

(Continued in Table I.2)

236

Table I.2 AMDNF at Component Level in the XML Format
(Continued from Table I.1)

(Continued from Table I.1)

 <case>
 <case_name> BankCase3 </case_name>
 <component> CashierTerminal </component>
 <component> CashierValidationServer </component>
 <component> TransactionServerManager </component>
 <component> EconomicTransactionServer </component>
 </case>
 <case>
 <case_name> BankCase4 </case_name>
 <component> CashierTerminal </component>
 <component> CashierValidationServer </component>
 <component> TransactionServerManager </component>
 <component> DeluxeTransactionServer </component>
 <component> AccountDatabase </component>
 </case>
</architecture_component>

Table I.3 AMDNF at Function/Interface Level in the XML Format

<?xml version="1.0" encoding='utf-8'?>

<!-- architecture at interface level for the banking domain example -->

<architecture_interface>
 <system_name> Bank </system_name>
 <case>
 <case_name> BankCase1 </case_name>
 <component>
 <componentname> ATM </componentname>
 <componentsubcase> ATMCase1 </componentsubcase>
 </component>
 <component>
 <componentname> CashierTerminal </componentname>
 <componentsubcase> CashierTerminalCase1 </componentsubcase>
 </component>
 <component>
 <componentname> CustomerValidationServer </componentname>
 <componentsubcase> CustomerValidationServerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> CashierValidationServer </componentname>
 <componentsubcase> CashierValidationServerCase1 </componentsubcase>
 </component>

(Continued in Table I.4)

237

Table I.4 AMDNF at Function/Interface Level in the XML Format

(Continued from Table I.3)

(Continued from Table I.3)

 <component>
 <componentname> TransactionServerManager </componentname>
 <componentsubcase> TransactionServerManagerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> EconomicTransactionServer </componentname>
 <componentsubcase> EconomicTransactionServerCase1 </componentsubcase>
 </component>
 </case>
 <case>
 <case_name> BankCase2_1 </case_name>
 <component>
 <componentname> ATM </componentname>
 <componentsubcase> ATMCase1 </componentsubcase>
 </component>
 <component>
 <componentname> CashierTerminal </componentname>
 <componentsubcase> CashierTerminalCase1 </componentsubcase>
 </component>
 <component>
 <componentname> CustomerValidationServer </componentname>
 <componentsubcase> CustomerValidationServerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> CashierValidationServer </componentname>
 <componentsubcase> CashierValidationServerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> TransactionServerManager </componentname>
 <componentsubcase> TransactionServerManagerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> DeluxeTransactionServer </componentname>
 <componentsubcase> DeluxeTransactionServerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> AccountDatabase </componentname>
 <componentsubcase> AccountDatabaseCase1 </componentsubcase>
 </component>
 </case>
 <case>
 <case_name> BankCase2_2 </case_name>
 <component>
 <componentname> ATM </componentname>
 <componentsubcase> ATMCase1 </componentsubcase>
 </component>

(Continued in Table I.5)

238

Table I.5 AMDNF at Function/Interface Level in the XML Format

(Continued from Table I.4)

(Continued from Table I.4)

 <component>
 <componentname> CashierTerminal </componentname>
 <componentsubcase> CashierTerminalCase1 </componentsubcase>
 </component>
 <component>
 <componentname> CustomerValidationServer </componentname>
 <componentsubcase> CustomerValidationServerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> CashierValidationServer </componentname>
 <componentsubcase> CashierValidationServerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> TransactionServerManager </componentname>
 <componentsubcase> TransactionServerManagerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> DeluxeTransactionServer </componentname>
 <componentsubcase> DeluxeTransactionServerCase2 </componentsubcase>
 </component>
 <component>
 <componentname> AccountDatabase </componentname>
 <componentsubcase> AccountDatabaseCase2 </componentsubcase>
 </component>
 </case>
 <case>
 <case_name> BankCase3 </case_name>
 <component>
 <componentname> CashierTerminal </componentname>
 <componentsubcase> CashierTerminalCase1 </componentsubcase>
 </component>
 <component>
 <componentname> CashierValidationServer </componentname>
 <componentsubcase> CashierValidationServerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> TransactionServerManager </componentname>
 <componentsubcase> TransactionServerManagerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> EconomicTransactionServer </componentname>
 <componentsubcase> EconomicTransactionServerCase1 </componentsubcase>
 </component>
 </case>

(Continued in Table I.6)

239

Table I.6 AMDNF at Function/Interface Level in the XML Format

(Continued from Table I.5)

(Continued from Table I.5)

 <case>
 <case_name> BankCase4_1 </case_name>
 <component>
 <componentname> CashierTerminal </componentname>
 <componentsubcase> CashierTerminalCase1 </componentsubcase>
 </component>
 <component>
 <componentname> CashierValidationServer </componentname>
 <componentsubcase> CashierValidationServerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> TransactionServerManager </componentname>
 <componentsubcase> TransactionServerManagerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> DeluxeTransactionServer </componentname>
 <componentsubcase> DeluxeTransactionServerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> AccountDatabase </componentname>
 <componentsubcase> AccountDatabaseCase1 </componentsubcase>
 </component>
 </case>
 <case>
 <case_name> BankCase4_2 </case_name>
 <component>
 <componentname> CashierTerminal </componentname>
 <componentsubcase> CashierTerminalCase1 </componentsubcase>
 </component>
 <component>
 <componentname> CashierValidationServer </componentname>
 <componentsubcase> CashierValidationServerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> TransactionServerManager </componentname>
 <componentsubcase> TransactionServerManagerCase1 </componentsubcase>
 </component>
 <component>
 <componentname> DeluxeTransactionServer </componentname>
 <componentsubcase> DeluxeTransactionServerCase2 </componentsubcase>
 </component>
 <component>
 <componentname> AccountDatabase </componentname>
 <componentsubcase> AccountDatabaseCase2 </componentsubcase>
 </component>
 </case>
</architecture_interface>

240

Table I.7 Abstract Component Interaction Model in the XML Format

<?xml version="1.0" encoding='utf-8'?>

<!-- component interaction model for the banking domain example -->

<component_interaction>
 <system_name> Bank </system_name>
 <interaction>
 <initiator> CashierTerminal </initiator>
 <responder> CashierValidationServer </responder>
 </interaction>
 <interaction>
 <initiator> ATM </initiator>
 <responder> CustomerValiationServer </responder>
 </interaction>
 <interaction>
 <initiator> CashierTerminal </initiator>
 <responder> TransactionServerManager </responder>
 </interaction>
 <interaction>
 <initiator> CashierTerminal </initiator>
 <responder> EconomicTransactionServer </responder>
 </interaction>
 <interaction>
 <initiator> CashierTerminal </initiator>
 <responder> DeluxeTransactionServer </responder>
 </interaction>
 <interaction>
 <initiator> ATM </initiator>
 <responder>TransactionServerManager </responder>
 </interaction>
 <interaction>
 <initiator> ATM </initiator>
 <responder> EconomicTransactionServer </responder>
 </interaction>
 <interaction>
 <initiator> ATM </initiator>
 <responder> DeluxeTransactionServer </responder>
 </interaction>
 <interaction>
 <initiator> DeluxeTransactionServer </initiator>
 <responder> AccountDatabase </responder>
 </interaction>
</component_interaction>

241

Table I.8 Architecture Model and Critical Use Case Model Mapping

(Function/Interface Level) in the XML format

<?xml version="1.0" encoding='utf-8'?>

<!-- mapping from architecture interface level to critical use case model for the banking
domain example -->

<map_architecture_cucm>
 <system_name> Bank </system_name>
 <map>
 <casenamefrom> BankCase1 </casenamefrom>
 <casenameto> CriticalUseCaseModel3 </casenameto>
 </map>
 <map>
 <casenamefrom> BankCase2_1 </casenamefrom>
 <casenameto> CriticalUseCaseModel1 </casenameto>
 </map>
 <map>
 <casenamefrom> BankCase2_2 </casenamefrom>
 <casenameto> CriticalUseCaseModel2 </casenameto>
 </map>
 <map>
 <casenamefrom> BankCase3 </casenamefrom>
 <casenameto> CriticalUseCaseModel3 </casenameto>
 </map>
 <map>
 <casenamefrom> BankCase4_1 </casenamefrom>
 <casenameto> CriticalUseCaseModel1 </casenameto>
 </map>
 <map>
 <casenamefrom> BankCase4_2 </casenamefrom>
 <casenameto> CriticalUseCaseModel2 </casenameto>
 </map>
</map_architecture_cucm>

242

Table I.9 Mapping of AMDNF from Component Level to
Function/Interface Level in the XML Format

<?xml version="1.0" encoding='utf-8'?>

<!-- Mapping from architecture at component level to architecture at interface level for the
banking domain example -->

<map_architecture>
 <system_name> Bank </system_name>
 <map>
 <casenamefrom> BankCase1 </casenamefrom>
 <casenameto> BankCase1 </casenameto>
 </map>
 <map>
 <casenamefrom> BankCase2 </casenamefrom>
 <casenameto> BankCase2_1 </casenameto>
 </map>
 <map>
 <casenamefrom> BankCase3 </casenamefrom>
 <casenameto> BankCase3 </casenameto>
 </map>
 <map>
 <casenamefrom> BankCase4 </casenamefrom>
 <casenameto> BankCase4_1 </casenameto>
 </map>
</map_architecture>

243

APPENDIX J: UGDM Example: Banking Domain Example

This appendix consists of a complete UGDM for the banking domain example developed

in Chapter 5.

UGDM Example: Banking Domain Example

1. General Information
1.1 Domain Name: /Finance/Banking
1.2 System Family Name: Bank
1.3 Version: v1.0
1.4 Date: 10/1/2002
1.5 Author: Zhisheng Huang, UniFrame Research Group
1.6 Description: This system family in the banking domain provides basic account transaction service.

2. Problem Space
2.1 Use Case Model
� Commonality and Variation

Bank: all (ManageCustomers, ManageAccounts, Login-exitAccount, ValidateUsers)
ManageCustomers: all (OpenAccount, CloseAccount)
ManageAccounts: all (ManageAccounts_Cashier, ManageAccounts_Customer?)
ManageAccounts_Cashier: all (WithdrawMoney_Cashier, DepositMoney_Cashier,

TransferMoney_Cashier, CheckBalance_Cashier)
ManageAccounts_Customer: all (WithdrawMoney_Customer, DepositMoney_Customer,

TransferMoney_Customer, CheckBalance_Customer)
ValidateUsers: all (ValidateUsers_Cashier, ValidateUsers_Customer?)
Login-exitAccount: all (Login-exitAccount_Cashier, Login-exitAccount_Customer?)

� Constraint Expression
o Default Constraint

default (ManageAccounts: ManageAccounts_Cashier)
default (ValidateUsers: ValidateUsers_Cashier)
default (Login-exitAccount: Login-exitAccount_Cashier)

o Satisfaction Constraint
mutual_require (ValidateUsers_Customer, ManageAccounts_Customer, Login-

exitAccount_Customer)

2.2 QoS Requirement Model

System.QoS: all (System.QoS.throughput, System.QoS.endToEndDelay)
System.QoS.throughput: CriticalUseCaseModel.QoS.thoughput
SystemQoS.endToEndDelay: CriticalUseCaseModel.QoS.endToEndDelay

2.3 Architecture Model in Hierarchical Form
� Commonality and Variation

Bank: all (UserSubsystem, UserValidationSubsystem, TransactionSubsystem)
UserSubsystem: all (ATM?, CashierTerminal)
UserValidationSubsystem: all (CustomerValidationServer?, CashierValidationServer)
TransactionSubsystem: all (TransactionServerManager, one-of (EconomicTransactionSubsystem,

DeluxeTransactionSubsystem))
EconomicTransactionSubsystem: EconomicTransactionServer

244

DeluxeTransactionSubsystem: all (DeluxeTransactionServer, AccountDatabase)
� Constraint Expression

o Default Constraint
default (UserSubsystem: CashierTerminal)
default (UserValidationSubsystem: CashierValidationServer)
default (TransactionSubsystem: all (TransactionServerManager,

EconomicTransactionSubsystem)
o Satisfaction Constraint

mutual_require (ATM, CustomerValiationServer)

2.4 System-Level Multiplicity Model

multiplicity ((Bank, CashierTerminal): 1..*)
multiplicity ((Bank, ATM) : 0..*)
multiplicity ((Bank, CashierValidationServer) : 1)
multiplicity ((Bank, CustomerValidationServer) : 0..1)
multiplicity ((Bank, TransactionServerManager) : 1)
multiplicity ((Bank, EconomicTransactionServer) : 0..2)
multiplicity ((Bank, DeluxeTransactionServer) : 0..2)
multiplicity ((Bank, AccountDatabase) : 0..2)

3. Solution Space and Configuration Knowledge
3.1 Architecture Related Models
3.1.1 Architecture Model in Disjunctive Normal Form (Abstract Component Level)
� Disjunctive Normal Form

Bank: one-of (BankCase1, BankCase2, BankCase3, BankCase4)

BankCase1: all (ATM, CashierTerminal, CustomerValidationServer, CashierValidationServer,

TransactionServerManager, EconomicTransactionServer)
BankCase2: all (ATM, CashierTerminal, CustomerValidationServer, CashierValidationServer,

TransactionServerManager, DeluxeTransactionServer, AccountDatabase)
BankCase3: all (CashierTerminal, CashierValidationServer, TransactionServerManager,

EconomicTransactionServer)
BankCase4: all (CashierTerminal, CashierValidationServer, TransactionServerManager,

DeluxeTransactionServer, AccountDatabase)
� Constraint Expression

o Default Constraint
Default (Bank: BankCase3)

3.1.2 Architecture Model in Disjunctive Normal Form (Function/Interface Level)
� Disjunctive Normal Form

Bank: one-of (BankCase1, BankCase2, BankCase3, BankCase4)
BankCase1: one-of (BankCase1_1)
BankCase2: one-of (BankCase2_1, BankCase2_2)
BankCase3: one-of (BankCase3_1)
BankCase4: one-of (BankCase4_1, BankCase4_2)

BankCase1_1: all (ATMCase1, CashierTerminalCase1, CustomerValidationServerCase1,

CashierValidationServerCase1, TransactionServerManagerCase1,
EconomicTransactionServerCase1)

BankCase2_1: all (ATMCase1, CashierTerminalCase1, CustomerValidationServerCase1,
CashierValidationServerCase1, TransactionServerManagerCase1,
DeluxeTransactionServerCase1, AccountDatabaseCase1)

BankCase2_2: all (ATMCase1, CashierTerminalCase1, CustomerValidationServerCase1,
CashierValidationServerCase1, TransactionServerManagerCase1,

245

DeluxeTransactionServerCase2, AccountDatabaseCase2)
BankCase3_1: all (CashierTerminalCase1, CashierValidationServerCase1,

TransactionServerManagerCase1, EconomicTransactionServerCase1)
BankCase4_1: all (CashierTerminalCase1, CashierValidationServerCase1,

TransactionServerManager Case1, DeluxeTransactionServerCase1, AccountDatabaseCase1)
BankCase4_2: all (CashierTerminalCase1, CashierValidationServerCase1,

TransactionServerManagerCase1, DeluxeTransactionServerCase2, AccountDatabaseCase2)
� Constraint Expression

o Default Constraint
default (BankCase2: BankCase2_1)
default (BankCase4: BankCase4_1)

3.1.3 Architecture Model Mapping

map (BankCase1: BankCase1_1)
map (BankCase2: BankCase2_1)
map (BankCase3: BankCase3_1)
map (BankCase4: BankCase4_1)

3.1.4 Abstract Component Interaction Model

interact (CashierTerminal, CashierValidationServer)
interact (ATM, CustomerValiationServer)
interact (CashierTerminal, TransactionServerManager)
interact (CashierTerminal, EconomicTransactionServer)
interact (CashierTerminal, DeluxeTransactionServer)
interact (ATM, TransactionServerManager)
interact (ATM, EconomicTransactionServer)
interact (ATM, DeluxeTransactionServer)
interact (DeluxeTransactionServer, AccountDatabase)

3.1.5 Component-level Multiplicity Model

multiplicity ((CashierValidationServer, CashierTerminal) : 1..*)
multiplicity ((CustomerValiationServer, ATM) : 1..*)
multiplicity ((TransactionServerManager, CashierTerminal) : 1..*)
multiplicity ((EconomicTransactionServer, CashierTerminal) : 1..*)
multiplicity ((DeluxeTransactionServer, CashierTerminal) : 1..*)
multiplicity ((TransactionServerManager, ATM) : 1..*)
multiplicity ((EconomicTransactionServer, ATM) : 1..*)
multiplicity ((DeluxeTransactionServer, ATM) : 1..*)
multiplicity ((DeluxeTransactionServer, AccountDatabase) : 1)

3.2 Design Feature Related Models
3.2.1 Interface Model

Interface: IAccountDatabase
1. Syntax
Account getAccount(String accountNumber, int accountType);

Pre: NONE
Post: NONE
Invariant: NONE
Communication Pattern: cp2s or cp2a
Description: This function returns an account object as identified by the parameters. It returns

null if the account specified does not exist.
void saveAccount(Account account);
Pre: NONE
Post: NONE

246

Invariant: NONE
Communication Pattern: cp2s or cp2a
Description: This function updates the account if it already exists; otherwise it adds an entry in

the database for this new account.
void removeAccount(Account account, int accountType);

Pre: NONE
Post: NONE
Invariant: NONE
Communication Pattern: cp2s or cp2a
Description: This function removes the specified account if it exists; otherwise it does

nothing.
2. Variation

IAccountDatabase: one-of (IAccountDatabaseCase1, IAccountDatabaseCase2)
IAccountDatabaseCase1: { cp2s}
IAccountDatabaseCase2: { cp2a}

3. Default
default (IAccountDatabase: IAccountDatabaseCase1)

Interface: IAccountManagement
…
Interface: ICustomerManagement
…
Interface: ITransactionServerManager
…
Interface: IValidation
…

3.2.2 Abstract Component Interface Model
� Disjunctive Normal Form

CashierTerminal: CashierTerminalCase1
ATM: ATMCase1
CashierValidationServer: CashierValidationServerCase1
CustomerValidationServer: CustomerValidationServerCase1
TransactionServerManager: TransactionServerManagerCase1
EconomicTransactionServer: EconomicTransactionServerCase1
DeluxeTransactionServer: one-of (DeluxeTransaxtionServerCase1,

DeluxeTransactionServerCase2)
AccountDatabase: one-of (AccountDatabaseCase1, AccountDatabaseCase2)

interface (CashierTerminalCase1: provided_interface (ICustomerManagementCase1,

IAccountManagementCase1), required_interface (ICustomerManagementCase1,
IAccountManagementCase1, ITransactionServerManagerCase1, IValidationCase1))

interface (ATMCase1: provided_interface (IAccountManagementCase1), required_interface
(IAccountManagementCase1, ITransactionServerManagerCase1, IValidationCase1))

interface (CashierValidationServerCase1: provided_interface (IValidationCase1),
required_interface (NONE))

interface (CustomerValidationServerCase1: provided_interface (IValidationCase1),
required_interface (NONE))

interface (TransactionServerManagerCase1: provided_interface
(ITransactionServerManagerCase1), required_interface (NONE))

interface (EconomicTransactionServerCase1: provided_interface (IAccountManagementCase1,
ICustomerManagementCase1), required_inteface (NONE))

interface (DeluxeTransaxtionServerCase1: provided_interface (IAccountManagementCase1,
ICustomerManagementCase1), required_interface (IAccountDatabaseCase1))

247

interface (DeluxeTransactionServerCase2: provided_interface (IAccountManagementCase1,
ICustomerManagementCase1), required_interface (IAccountDatabaseCase2))

interface (AccountDatabaseCase1: provided_interface (IAccountDatabaseCase1),
required_interface (NONE))

interface (AccountDatabaseCase2: provided_interface (IAccountDatabaseCase2),
required_interface (NONE))

� Constraint Expression
o Default Constraint

default (DeluxeTransactionServer : DeluxeTransactionServerCase1)
default (AccountDatabase : AccountDatabaseCase1)

o Satisfaction Constraint
mutual_require (DeluxeTransactionServerCase1, AccountDatabaseCase1)
mutual_require (DeluxeTransactionServerCase2, AccountDatabaseCase2)

3.2.3 Abstract Component Model

Abstract Component: AccountDatabaseCase1
1. Component Name: AccountDatabase
2. Component Subcase: AccountDatabaseCase1
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide an account database service.
6. Computational Attributes:

6.1 Inherent Attributes:
6.1.1 id: N/A
6.1.2 Version: version 1.0
6.1.3 Author: N/A
6.1.4 Date: N/A
6.1.5 Validity: N/A
6.1.6 Atomicity: Yes
6.1.7 Registration: N/A
6.1.8 Model: N/A

6.2 Functional Attributes:
6.2.1 Function description: Serve as an account database.
6.2.2 Algorithm: N/A
6.2.3 Complexity: N/A
6.2.4 Syntactic Contract

6.2.4.1 Provided Interface: IAccountDatabaseCase1
6.2.4.2 Required Interface: NONE

6.2.5 Technology: N/A
6.2.6 Expected Resources: N/A
6.2.7 Design Patterns: NONE
6.2.8 Known Usage: NONE
6.2.9 Alias: NONE

7. Cooperation Attributes
7.1 Preprocessing Collaborators: DeluxeTransactionServerCase1
7.2 Postprocessing Collaborators: NONE

8. Auxiliary Attributes:
8.1 Mobility: No
8.2 Security: L0
8.3 Fault tolerance: L0

9. Quality of Service
9.1 QoS Metrics: throughput, end-to-end delay
9.2 QoS Level: N/A
9.3 Cost: N/A

248

9.4 Quality Level: N/A

Abstract Component: DeluxeTransactionServer

…
Abstract Component: EconomicTransactionServer

…
Abstract Component: TransactionServerManager

…
Abstract Component: CashierTerminal

…
Abstract Component: ATM

…
Abstract Component: CashierValidationServer

…
Abstract Component: CustomerValidationServer

…

3.3 QoS-related Models
3.3.1 Critical Use Case Model (Function/Interface Level)
� Disjunctive Normal Form

CriticalUseCaseModel: one-of (CriticalUseCaseModel1, CriticalUseCaseModel2,
CriticalUseCaseModel3)

CriticalUseCaseModel1: all (DepositMoneyCase1_1, WithdrawMoneyCase1_1,

TransferMoneyCase1_1)
CriticalUseCaseModel2: all (DepositMoneyCase1_2, WithdrawMoneyCase1_2,

TransferMoneyCase1_2)
CriticalUseCaseModel3: all (DepositMoneyCase2, WithdrawMoneyCase2, TransferMoneyCase2)

DepositMoneyCase1_1: path_f(CashierTerminal.deposit[cp2s],

DeluxeTransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

DepositMoneyCase1_2: path_f (CashierTerminal.deposit[cp2s],
DeluxeTransactionServer.deposit[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

DepositMoneyCase2: path_f (CashierTerminal.deposit[cp2s],
EconomicTransactionServer.deposit[cp2s])

WithdrawMoneyCase1_1: path_f (CashierTerminal.withdraw[cp2s],
DeluxeTransactionServer.withdraw[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

WithdrawMoneyCase1_2: path_f (CashierTerminal.withdraw[cp2s],
DeluxeTransactionServer.withdraw[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

WithdrawMoneyCase2: path_f (CashierTerminal.transfer[cp2s],
EconomicTransactionServer.transfer[cp2s])

TransferMoneyCase1_1: path_f (CashierTerminal.transfer[cp2s],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2s],
AccountDatabase.saveAccount[cp2s])

TransferMoneyCase1_2: path_f (CashierTerminal.transfer[cp2s],
DeluxeTransactionServer.transfer[cp2s], AccountDatabase.getAccount[cp2a],
AccountDatabase.saveAccount[cp2a])

TransferMoneyCase2: path_f (CashierTerminal.transfer[cp2s],
EconomicTransactionServer.transfer[cp2s])

249

� Constraint Expression
o Default Constraint

default (CriticalUseCase: CriticalUseCase3)

3.3.2 Architecture Model and Critical Use Case Model Mapping (Function/Interface Level)
map (BankCase1_1: CriticalUseCaseModel3)
map (BankCase2_1: CriticalUseCaseModel1)
map (BankCase2_2: CriticalUseCaseModel2)
map (BankCase3_1: CriticalUseCaseModel3)
map (BankCase4_1: CriticalUseCaseModel1)
map (BankCase4_2: CriticalUseCaseModel2)

3.3.3 QoS Composition and Decomposition Model (QCDM)

QCDM: one-of(CriticalUseCaseModel1, CriticalUseCaseModel2, CriticalUseCaseModel3)
� CriticalUseCaseModel1

1) QoS Composition Model
1.1) QoS Composition Rules for throughput
System_throughput = CriticalUseCaseModel1_throughput
CriticalUseCaseModel1_throughput = min (DepositMoneyCase1_1_throughput,

WithdrawMoneyCase1_1_throughput, TransferMoneyCase1_1_throughput)
1/DepositMoneyCase1_1_throughput = 1/CashierTerminal.deposit_throughput +

1/DeluxeTransactionServer.deposit_throughput +
1/AccountDatabase.getAccount_throughput +
1/AccountDatabase.saveAccount_throughput

1/WithdrawMoneyCase1_1_throughput = 1/CashierTerminal.withdraw_throughput +
1/DeluxeTransactionServer.withdraw_throughput +
1/AccountDatabase.getAccount_throughput +
1/AccountDatabase.saveAccount_throughput

1/TransferMoneyCase1_1_throughput = 1/CashierTerminal.transfer_throughput +
1/DeluxeTransactionServer.transfer_throughput +
1/AccountDatabase.getAccount_throughput +
1/AccountDatabase.saveAccount_throughput

1.2) QoS Composition Rules for endToEndDelay
SystemQoS.endToEndDelay = CriticalUseCaseModel1_endToEndDelay
CriticalUseCaseModel1_endToEndDelay = max (DepositMoneyCase1_1_endToEndDelay,

WithdrawMoneyCase1_1_endToEndDelay, TransferMoneyCase1_1_endToEndDelay)
DepositMoneyCase1_1_endToEndDelay = sum(CashierTerminal.deposit_endToEndDelay,

DeluxeTransactionServer.deposit_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

WithdrawMoneyCase1_1_endToEndDelay =
sum(CashierTerminal.withdraw_endToEndDelay,
DeluxeTransactionServer.withdraw_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

TransferMoneyCase1_1_endToEndDelay = sum(CashierTerminal.transfer_endToEndDelay,
DeluxeTransactionServer.transfer_endToEndDelay,
AccountDatabase.getAccount_endToEndDelay,
AccountDatabase.saveAccount_endToEndDelay)

2) QoS Decomposition Model
2.1) QoS Decomposition Rules for throughput

CashierTerminal.deposit_throughput > System_throughput
CashierTerminal.withdraw_throughput > System_throughput
CashierTerminal.transfer_throughput > System_throughput

250

DeluxeTransactionServer.deposit_throughput > System_throughput
DeluxeTransactionServer.withdraw_throughput > System_throughput
DeluxeTransactionServer.transfer_throughput > System_throughput
AccountDatabase.getAccount_throughput > System_throughput
AccountDatabase.saveAccount_throughput > System_throughput

2.2) QoS Decomposition Rules for endToEndDelay
CashierTerminal.deposit_endToEndDelay < System_endToEndDelay
CashierTerminal.withdraw_endToEndDelay < System_endToEndDelay
CashierTerminal.transfer_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.deposit_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.withdraw_endToEndDelay < System_endToEndDelay
DeluxeTransactionServer.transfer_endToEndDelay < System_endToEndDelay
AccountDatabase.getAccount_endToEndDelay < System_endToEndDelay
AccountDatabase.saveAccount_endToEndDelay < System_endToEndDelay

� CriticalUseCaseModel2

…
� CriticalUseCaseModel3

…

251

APPENDIX K: Acronyms

ACIM: Abstract Component Interface Model
ACM: Abstract Component Model
AMDNF: Architecture Model in Disjunctive Normal Form
AMHF: Architecture Model in Hierarchical Form
AMNF: Architecture Model in Normalized Form
AMM: Architecture Model Mapping
BNF: Backus-Naur Form
CBSD: Component-based Software Development
CONT: Commercial Off-the-Net
COTS: Commercial Off-the-Shelf
CUCM: Critical Use Case Model
DCS: Distributed Computing Systems
DFIM: Design Feature Interaction Model
DSL: Domain Specific Language
IM: Interface Model
MDA: Model Driven Architecture
MM: Multiplicity Model
MMSL: System-Level Multiplicity Model
MMCL: Component-level Multiplicity Model
PDM: Platform Dependent Model
PIM: Platform Independent Model
PLP: Product Line Practice
QoS: Quality of Service
QRM: QoS Requirement Model
UA: UniFrame Approach
UCM: Use Case Model
UDSL: UniFrame Domain Specific Language
UGDM: UniFrame Generative Domain Model
UGDP: UniFrame UGDM Development Process
UQOS: UniFrame QoS Framework
URDS: UniFrame Resource Discovery Service
USGI: UniFrame System Generation Infrastructure
USGPF: UniFrame System-Level Generative Programming Framework

251

LIST OF REFERENCES

252

LIST OF REFERENCES

[AAG01] J. Ø. Aagedal. Quality of Service Support in Development of Distributed
Systems. PhD thesis, Department of Informatics, Faculty of Mathematics and Natural
Sciences, University of Oslo, 2001.

[APA03] Apache. Xerces Java Parser Readme. http://xml.apache.org/xerces-j/, 2003.

[APA03a] Apache Jakarta Project. Apache Tomcast. http://jakarta.apache.org/tomcat/,
2003.

[AUG95] M. Auguston. Program Behavior Model Based on Event Grammar and its
Application for Debugging Automation. In Proceedings of the 2nd Inernational
Workshop on Automated and Algorithmic Debugging, pages 277-291, 1995.

[AUG97] M. Auguston, A. Gates, M. Lujan. Defining a Program Behavior Model for
Dynamic Analyzers. In Proceedings of the 9th International Conference on Software
Engineering and Knowledge Engineering, SEKE’97, pages 257-262, 1997.

[BAT92] D. Batory, S. O’Malley. The Design and Implementation of Hierarchical
Software Systems with Reusable Components. ACM Transactions on Software
Engineering and Methodology, October 1992.

[BAT95] D. Batory, L. Coglianese, M. Goodwin, S. Shafer. Creating Reference
Architectures: An Example from Avionics. Symposium on Software Reusability 1995,
Seattle, Washington.

[BAT96] D. Batory. Subjectivity and GenVoca Generators. 1996 International
Conference on Software Resuse, Orlando, Florida.

[BAT02] D. Batory, R. Lopez-Herrejon, J. Martin. Generating Product-Lines of Product-
Families. 2002 Automated Software Engineering Conference, Edinburgh, Scotland, pp
81-92.

[BAY03] Bayfront Technologies, Inc. http://www.bayfronttechnologies.com, 2003.

[BOO98] G. Booch, I. Jacobson, J. Rumbaugh, J. Rumbaugh. The Unified Modeling
Language User Guide. Addison-Wesley, 1998. ISBN: 0201571684.

253

[BRA01] G. Brahnmath, R. Raje, A. Olson, C. Sun. Quality of Service Catalog for
Software Components. Technical Report (TR-CIS-0219-01), Department of Computer
and Information Science, Indiana University Purdue University Indianapolis, 2001.

[BRA02] G. Brahnmath. The UniFrame Quality of Service Framework. MS Thesis,
Department of Computer & Information Science, Indiana University Purdue University
Indianapolis, December 2002.

[BRA02a] G. Brahnmath, R. Raje, A. Olson, B. Bryant, M. Auguston, C. Burt. A Quality
of Service Catalog for Software Components. The Proceedings of the Southeastern
Software Engineering Conference, Huntsville, Alabama, April 2002, pages 513-520.

[BRY00] B. Bryant. Object-Oriented Natural Language Requirements Specification. In
Proceedings of ACSC 2000, the 23rd Australasian Computer Science Conference,
January 30-February 4, 2000, Canberra, Australia, January 2000, pages 24-30.

[BRY02] B. Bryant, B. Lee. Two-Level Grammar as an Object-Oriented Requirements
Specification Language, Proceedings (CR-ROM) of 35th Hawaii International
Conference on System Sciences, 2002, page 10.
http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/PDFdocuments/STDSLO1.pdf.

[BRY02a] B. Bryant, C. Burt, M. Auguston, R. Raje, A. Olson. Formal Specification of
Generative Component Assembly Using Two-Level Grammar. Proceedings of SEKE
2002, Fourteenth International Conference on Software Engineering and Knowledge
Engineering, July 15-19, 2002, Sant'Angelo d'Ischia, Italy

[BUS96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture. A System of Patterns. John Wiley & Sons Ltd,
Chichester, UK, 1996.

[CAO02] F. Cao, B. Bryant, R. Raje, M. Auguston, A. Olson, C. Burt. Component
Specification and Wrapper/Glue Code Generation with Two-Level Grammar using
Domain Specific Knowledge. Proceedings of ICFEM 2002, 4th International Conference
on Formal Engineering Methods, Shanghai, China, October 2002. Springer-Verlag
Lecture Notes in Computer Science, Vol. 2495, 2002, pp. 103-107.

[CAO03] F. Cao, Z. Huang, B. Bryant, R. Raje, A. Olson, M. Auguston, C. Burt. To be
appear on the Proceedings of the 2003 International Conference on Software
Engineering Research and Practice. SERP'03: June 23-26, 2003, Las Vegas, Nevada,
USA.

[CLE88] J. C. Cleaveland. Building application generators. IEEE Software, pages 25–33,
July 1988.

254

[CLE01] P. Clements, P. Donohoe, K. Kang, L. Northrop. Fifth Product Line Practice
Workshop Report. September, 2001.
http://www.sei.cmu.edu/publications/documents/01.reports/01tr027.html.

[COH99] S. Cohen. From Product Line Architectures to Products. Position paper for the
ECOOP'99 Workshop on Object-Technology for Product-Line Architectures, Lisbon,
Portugal, June 1999. http://www.esi.es/Projects/Reuse/Praise/pdf/ses2-1.pdf.

[COH00] S. Cohen, B. Gallagher, M. Fisher, L. Jones, R. Krut, L. Northrop, W. O’Brien,
D. Smith, A. Soule. Third DoD Product Line Practice Workshop Report. July 2000.
http://www.sei.cmu.edu/publications/documents/00.reports/00tr024.html.

[CZA99] K. Czarnecki, U.W. Eisenecker. Components and Generative Programming.
Proceedings of the Joint European Software Engineering Conference and ACM
SIGSOFT International Symposium on the Foundations of Software Engineering
(ESEC/FSE 99, Toulouse, Frankreich, September 1999). Springer-Verlag,
1999.http://www-ia.tu-ilmenau.de/~czarn/esec99/esec99.pdf.

[CZA99a] K. Czarnecki. DEMRAL: Domain Engineering Method for Developing
Reusable Algorithmic. http://www-ia.tu-ilmenau.de/~czarn/. 1999.

[CZA00] K. Czarnecki, U.W. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

[GAM95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns Elements of
Reusable Object-Orientated Software. Addison-Wesley, 1995.

[GME] Generic Modeling Environment. Institute for Software Integrated Systems.
Vanderbilt University. http://www.isis.vanderbilt.edu/Projects/gme/default.html.

[HUA02] Z. Huang, R. Raje, A. Olson, B. Bryant, M. Auguston, C. Burt, C. Sun. Unified
Approach for System-Level Generative Programming. Proceedings of the IEEE Fifth
International Conference on Algorithms and Architectures for Parallel Processing,
Beijing, China, October 2002, pp. 136-142.

[IBM02] IBM. IBM WebSphere V4.0 Advanced Edition Handbook. Chapter 17, March
2002. http://www.redbooks.ibm.com/redpieces/pdfs/sg246176.pdf.

[ISO86] Quality Vocabulary. International Organization for Standardization, Geneva.
ISO 8402: 1986, page 8.

[KAN90] K. Kang, S. Cohen, J. Hess, W. Nowak, S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report, CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, November
1990.

255

[LEE02] B. Lee, B. Bryant. Automated Conversion from Requirements Documentation
to an Object-Oriented Formal Specification Language. Proceedings of SAC 2002, the
2002 ACM Symposium on Applied Computing, March 11-14, 2002, Madrid, Spain, 2002,
pp. 932-936.

[LEE02a] B. Lee, B. Bryant. Automation of Software System Development Using
Natural Language Processing and Two-Level Grammar. Proceedings of the 2002
Monterey Workshop on Radical Innovations Software and Systems Engineering in the
Future, Venice, Italy, October 2002.

[LUQ01] Luqi, V. Berzins, J. Ge, M. Shing, M. Auguston, B. Bryant, B. Kin. DCAPS -
Architecture for Distributed Computer Aided Prototyping System. In Proceedings of the
12th IEEE International Workshop on Rapid System prototyping, pp.103-109, June 25-
27, 2001, Monterey Beach Resort, California, USA, IEEE Computer Society Press, 2001.

[MAY02] S. Mayo. Web Services: How Will Professional Services Firms Compete for
This Multibillion-Dollar Opportunity. IDC, March 2002.

[MS98] Microsoft Corporation. DCOM Specifications.
URL: -http://www.microsoft.com/oledev/olecom, 1998.

[NEI80] J. Neighbors. Software Construction Using Components. PhD Thesis. University
of California at Irvine, 1980, UCI ICS technical report TR-160.

[NEI03] J. Neighbors. Draco 1.2 Users Manual.
http://www.bayfronttechnologies.com/manual.htm, 2003.

[NET03] .NET, Microsoft Corporation. http://www.microsoft.com/net/, 2003.

[OMG99] Object Management Group. CORBA Components. Technical report, Object
Management Group TC Document orbos/99-02-05, March 1999.
http://www.omg.org/cgi-bin/doc?orbos/99-02-05.

[OMG01] Object Management Group (OMG). Model Driven Architecture: A Technical
Perspective. Technical Report, OMG Document No. ab/2001-02-01/04, February 2001.
ftp://ftp.omg.org/pub/docs/ab/01-02-04.pdf.

[OMG03] Object Management Group (OMG). UML Notation Guide. formal/03-03-10
(UMl 1.5 chapter 3 - UML Notation Guide). http://www.omg.org/cgi-bin/doc?formal/03-
03-10, 2003.

[ORA03] Oracle. http://www.oracle.com, 2003.

256

[ORF98] R. Orfali, D. Harkey. Client/Server Programming with JAVA and CORBA. The
second edition. John Wiley & Sons, Inc., 1998.

[RAJ00] R. Raje. UMM: Unified Meta-object Model. Proceedings of 4th IEEE
International Conference on Algorithms and Architecture for Parallel Processing,
ICA3PP'2000, pp: 454-465, Hong Kong, 2000.

[RAJ01] R. Raje, B. Bryant, M. Auguston, A. Olson, C. Burt. A Unified Approach for
the Integration of Distributed Heterogeneous Software Components. Proceedings of the
2001 Monterey Workshop on Engineering Automation for Software Intensive System
Integration, Monterey, California, 2001, pp: 109-119.

[RAJ02] R. Raje, B. Bryant, A. Olson, M. Auguston, C. Burt. A quality-of-service-based
framework for creating distributed heterogeneous software components. Concurrency
and Computation: Practice and Experience, Volume 14, Issue 12, 2002. Pages: 1009-
1034.

[SEI96] J. Seigel. CORBA Fundamentals and Programming. John Wiley & Sons, Inc.,
1996.

[SEI02] Software Engineering Institute, Carnegie Mellon University. The Product Line
Approach Initiative. http://www.sei.cmu.edu/plp/plp_init.html, 2002.

[SEI02a] Software Engineering Institute, Carnegie Mellon University. A Framework for
Software Product Line Practice-Version 3.0.
http://www.sei.cmu.edu/plp/framework.html, 2002.

[SEI02b] Software Engineering Institute, Carnegie Mellon Univeristy. Organization
Domain Modeling. http://www.sei.cmu.edu/str/descriptions/odm.html, 2002.

[SEI03] Software Engineering Institute, Carnegie Mellon University. Feature-Oriented
Domain Analysis. http://www.sei.cmu.edu/domain-engineering/FODA.html, 2003.

[SHA96] M. Shaw, D. Garlan. Software Architecture: Perspectives on a Emerging
Discipline. Prentice Hall, Englewood Cliffs, NJ, 1996. ISBN: 0-13-182957-2

[SIM96] M. Simos, et al. Software Technology for Adaptable Reliable Systems (STARS)
Organization Domain Modeling (ODM) Guidebook Version 2.0 (STARS-VC-
A025/001/00). Manassas, VA: Lockheed Martin Tactical Defense Systems, 1996.

[SIR02] N. Siram. An Architecture for the UniFrame Resource Discovery Service. MS
Thesis. Indiana University Purdue University Indianapolis, March 2002.

[STE00] B. Stearns. JavaBeans 101, Part I. October 2000.
http://developer.java.sun.com/developer/onlineTraining/Beans/bean01/index.html.

257

[SUN02] C. Sun, R. Raje, A. Olson, M. Auguston, B. Bryant, C. Burt, Z. Huang.
Composition and Decomposition of Quality of Service Parameters in Distributed
Component-based Systems. To appear in Prodeedings of the Fifth International
Conference on Algorithms and Architectures for Parallel Processing (ICA3PP 2002).

[SUN03] C. Sun, R. Raje, A. Olson, B. Bryant, C. Burt and M. Auguston. A Composition
Model for the Response Time and Throughput in Distributed Component-Based Systems.
Technical Report, TR-0808-03, Department of Computer and Information Science,
IUPUI. May 8, 2003.

[SM01] Sun Microsystems. JavaTM 2 Platform Enterprise Edition Specification, Version
1.3. Sun Microsystems, August 2001. http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf

[SM02] Sun Microsystems. The J2EE TurorialTM. Sun Microsystems, April 24, 2002.
http://java.sun.com/j2ee/tutorial/.

[SM02a] Sun Microsystems. Developing Enterprise Applications Using the J2EETM
Platform. Sun Microsystems, August 2002.
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro2/j2ee.html

[SM03] Sun Microsystems. Java 2 Platform, Standard Edition (J2SE), v1.4.0.
http://java.sun.com/j2se/1.4/, 2003.

[SM03a] Sun Microsystems. Javabeans Component Architecture Documentation.
http://java.sun.com/products/javabeans/docs/, 2003.

[SM03b] Sun Microsystems. JDBCTM API.
http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/, 2003.

[SM03c] Sun Microsystems. Java Transaction API (JTA).
http://java.sun.com/products/jta/, 2003.

[SM03d] Sun Microsystems. The JNDI Tutorial.
http://java.sun.com/products/jndi/tutorial/, 2003.

[SM03e] Sun Microsystems. J2EE Connector Architecture.
http://java.sun.com/j2ee/connector/, 2003.

[SM03f] Sun Microsystems. Java API for XML Processing (JAXP) Documentation.
http://java.sun.com/xml/jaxp/docs.html, 2003.

[SM03g] Sun Microsystems. Java Remote Method Invocation (RMI).
http://java.sun.com/products/jdk/rmi/

258

[SZY99] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, ISBN 0-201-17888-5, 1999, page 34.

[VAN00] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. ACM SIGPLAN Notices, 35(6):26--36, June 2000.

[VAN02] A. van Deursen, P. Klint. Domain-Specific Language Design Requires Feature
Descriptions. Journal of Computing and Information Technology, 10(1):1-17, 2002.

[VAR02] C. Varghese. Examining, Documenting, and Modeling the Problem Space of a
Variable Domain. MS Thesis. Indiana University Purdue University Indianapolis, June
2002.

[WEB02] The Web Services Community Portal, http://www.webServices.org, 2002.

[WWW03] World Wide Web. HTTP - Hypertext Transfer Protocol.
http://www.w3.org/Protocols/, 2003.

[YOU95] D. Young. Object-Orientated Programming with C++ and OSF/Motif.
Prentice-Hall, 1995.

[ZHA02] W. Zhao. Two-Level Grammar as the Formalism for Middleware Generation in
Internet Component Broker Organizations. Proc. of GPCE'2002 Young Research
Workshop. Pittsburgh, PA, October 2002. http://www.cs.uni-
essen.de/dawis/conferences/GCSE_SAIG_YRW2002/submissions/final/Zhao.pdf

